
Laboratory

Exercises

KENBAK-l

Computer

KENBAK CORPORATION

P.o. BOX 49324

LOS ANGELES, CA. 90049

C KENBAK CORPORATION 1971
ALL RIGHTS RESERVED

Preface

TheseLaboratoryExercisesI in a workbook format I are intended

for independentwork. Ideasand conceptsare introducedin small

incrementsand are interspersedwith actualexperienceon the computer.

Emphasisis placedon the principles of self-discoveryI immediatefeedback,

and rewards.

Other books or material might be usedas companionvolumes for

a more formal and theoreticalpresentation. However, the Exercisesare

independentand may be usedas the only referencematerial.

Questionsand commentsare welcome.

Kenbak Corporation
P. O. Box 49324
Los AngelesI California 90049
U. S. A.

EX - i

Rev A

Exercise 1

Every computerhas a memory in which numbersare stored.. Some

of the numbersare instructionswhich tell the computerwhat to do.. Other

numbersare data which the computeroperateson to obtain the answersto

problems.. Before long we will expectyou to be telling the computer

what to do ..

The memory in our computeris divided into 256 memory locations.

At this time we can understandthesebestas 256 boxes or drawersI see

Figure 1. 1 0 Each box is one memory location and containsone number.

A numbermay be changedin any location by using the pushbuttonson the

front panelof the computers When a numberis storedor placedin a

memory location, the numberwhich was there before is destroyedor lost e

Or a numberin any location may be examinedand displayedin the lights

on the front panelof the computer0 Examining or readinga numberin a

memory location does not changeit or removeit.

Every memory location has an addresswhich is the nameof the

locatione This addressis a numberitself. If we wish to reador store a

numberin a memory locationI we must first say what the addressis.

Becausethe word Unumber" can meantwo different things to us I we

are likely to get confused. You may not know whetherwe meanan address

of a memory location or whetherw"emeanthe contentsof the memory

location0 Let I s agreethat when we say:

Number: We meana numberin general. It could be
an addressI or the contentsof a memory
locationI or somethingelse.

Address: We meana numberwhich is usedas the
name of a memory location.

Data: We meana numberwhich is storedor is
going to be storedin a memory location.

All addressesare numbers. All data are numbers. Not all numbersare

addressesor data.

EX 1-1

00001010

101011011
11111111

00001110

00001001

00001101
00001100
00001011

00001000

00000110
00000111

00000101

00000011
00000100

Each box or memory location contains
one number. We can seethe number
in this box becauseit happensto be
on top. The other memory locations
contain numberstoo. The numbers
may be changed.

I

---¢
I

~ 00000001
/ ~ - - -

00000010

"--- 11001001
00000000

The numberon the outside
of the box is the address
of the memory location.
It neverchanges.

This box representsone
memory location. There
are 256 memory locations
in the computer.

The dashedlines indicate
boxeswhich we did not
draw.

Figure 1. 1 The Memory In The ComputerMay Be Thought Of
As A Group Of Boxes

EX 1-2

Our addressesand data are madeof eight digits where eachdigit is

a 0 or a 1. This kind of numberis called IIbinary" becausethere are only

two choicesin eachposition, 0 or 1. In our more familiar decimal numbers

thereare ten possibilitiesin eachposition. For the computer, binary

numbersare best. For us J binary numbersseemstrange. We wi 11 see

that they are very easyto learn though.

We will let a 0 in a binary numbermeanthat no button is to be pushed.

We will let a 1 meanthat a button is to be pushed. We will reada light

that is off as a O. A light that is on will be a 1.

o = Button Not Pushed = D or Light Off = 0

1 = Button Pushed =. or Light On = •

That1s easyenough,isn1t it?

Let I S use what we have learnedwith the computer. Figure 1.2 shows

the location of the lights and switcheson the front panel. We wonIt tell

you about all of the switchesand lights now.

If power is off when you begin, turn the Power switch to the On

position. Pushthe Start button and then pushthe Stop button. If power

is alreadyon I pushStop. Then you are readYe

The small toggle switch betweenthe Addressand the Memory lights

should be placedin the UNL position. When this switch is in the LOCK

position, data cannotbe enteredfrom the front panel. In the UNL (for

Unlock) position, entry from the control panel is possible.

EX 1-3

8 OUTPUT
LIGHTS

POWER
~_STOP

______START

STORE IMEMORY...-. READ

SET I
DISPLAY ADDRESSw...- _

____________-.CLEAR

4 ~ ~4 ~
I I I' I
I I I I I
I I I I I
10101101

AN EXAMPLE

.0.0••0.. 0 0 0 ~

DDDDDDDD D DO 0 ODD
I I I I I
I I I I I

8 INPUT
PUSHBUTTONS

Figure 1.2 The Front Panelof the Computer

Let ISSee how we can enterdata into a memory location. We must

do two things. First I we must tell the computerthe addressof the memory

locationto be used. SecondI we must tell the computerwhat our data to

be storedis. Let1s supposewe want to store the data 00111000into the

location whoseaddressis 10 101101 0 First push ClearI then use the eight

input pushbuttonsto enterthe address. The picture showsthis number

being entered. As each 1 is entered,the output light aboveit will turn on.

If you make a mistake, use Clear to eraseall of the lis and try again•.

When the output lights showthat you have enteredthe numbercorrectlyI

you can go on. To tell the computerthat this is an addressI pushthe

Set Addresspushbutton.

Now we can enterthe data to be stored. To do this I push Clear.

This erasesthe numberwhich was our address. (When we pushedthe

Set Addressbutton, the computermadea copy of this numberin another

place.) Now enterthe dataI pushingthe input buttonswhich correspond

to lis. In our example, (data = 00111000)I theseare the 3rd, 4th, and 5th

positionsfrom the left. When theseare correctly entered,we can store

the data. To do that, pushStore Memory.

EX 1-4

How do we know it was done right? Did the computerreally do what

we had told it to do? Letls readwhat is in location 10101101.

To readthe data in a location, the addressof the location is entered

first It PushClear andthen the input buttonswhich correspondto the 11s

in the address. When the numberis correctly entered,usethe Set Address

pushbuttonto tell the computerthat this is an address. After doing this I

pushRead Memory. The data in the memory location whoseaddress you

just enteredwill be shownin the output lights. In our examplethis should

be 00111000.

START

READ STORE

ENTER ADDRESS ENTER ADDRESS

SET ADDRESS SET ADDRESS

READ MEMORY ENTER DATA

DATA APPEARS STORE MEMORY
IN LIGHTS

Figure 1.3 CanYou Find Your Vvay Around The Boxes?
What Does It Tell You?

EX 1-5

Try enteringthe following numbers:

In the locationwhoseaddressis

10000001

01010011

00000000

00001111

11111110

00101100

00001010

00001011

Store the data

11001100

11010001

00001111

10101010

00000000

00000001

00000011

00000100

After you have enteredthe information, readthesesamelocationsand see

if the numbersare there\I T'hey shouldbe. Readthem a secondtime and

seeif they are still there. Readingor copying is non-destructive. The

numberremainsI it is not destroyed.

Try this experiment. Store the data below. Readthe data to check

your entry. Turn Poweroff \I Turn Poweron. PushStart. PushStop. Now

readthe contentsof theselocationsand fill in the blanks.

Location

00000000

11110000

00001111

1100110.0

00110011

11001100

After Poweris Off and On

Has the data changed?---------
Do you know why?-----_._-----------

Try this also. Putthe data 00000000into location 11111111. Nov!

readthe contentsof location 11111111.

What did you read?
- - = - - = - - ~ - , - - - - - - - - - - - - - - -

This is a speciallocation and we will learn more about it later.

Put the small toggle switch in the LOCK position and try to enterdata.

Can you enterdata? Canyou readdata?

EX 1-6

Exercise2

In Exercise I, we learnedhow to readandto store one numberin

one memory location. We useddifferent addresses,but the memory

locationswere not adjacent. They did not follow one after the other.

Usually I we will reador store numbersin locationsthat follow one after

the other. Their addressesare in a continuoussequencelike 2, 3, 4, 5,

etc. The computercontainsa feature

which makesit easierto reador store

in locationsthat follow after each START

other.

Wheneverthe Reador Store

pushbuttonis depressed,the address

counts by one inside the computer.

The addressis a binary number.

We haven'tdiscussedhow binary

numberscount though we will shortly.

For the time being we donIt needto

know what a consecutivesequence

of binary numberslooks like.

To readthe contentsof a num-

ber of locationswhoseaddressare

consecutive(like 17,18,19,20,21),

the addressof the smallestone is

entered(including Set Address).

Depressingthe Readpushbuttononce

causesthe data in that location to

be displayed. Pushingthe Read

pushbuttonagaincausesthe data in

the next locationto be displayed.

We canrepeatthis for as many times

as there are locationsto be read,

Figure 2.1

ENTER ADDRESS

DATA APPEARS
IN LIGHTS

Figure 2. 1 Reading

EX 2-1

ENTER DATA

To store numbersin consecutive

locationsI againthe addressof the

smallestone is entered. Then the

data to be storedin the first location

is enteredwith the input buttonsand

the Store pushbuttonis usedonce.

The addressis automaticallyadvanced

to the next location by the computer.

The data to be storedin this second

location is enteredin the input

buttons (after clearing) and Store is

depressedagain. The processis

repeateduntil all of the data has

.beenstored, Figure 2.2.

Let IS try it 011 the computer,

but first let I s review whetheryou

rememberedhow to store data in one

location and to readit back. Into

location 01000III put the data

10111000. Readthe contentsof

location 01000Ill. Does it contain

10111000,the data which you had

put there? If you were unsuccessful

or didnIt rememberhow I you should

go back and review Exercise1 before

continuing.

START

ENT·ERADDRESS

STORE MEMORY

Figure 2.2 Storing

Have you noticedthat it is hard to keeptrack of your placewhen

}TOll are readingour binary numbers? It is easierto readthe numbersif the

eight aIsand11s are placedin groups. Insteadof

the grouping

11100100

11 100 100

is easierto read. You III make fewer mistakesif you do it this way.

EX 2-2

Startingwith location 00 000 oII, store the following data:

In Location Store

00 000 all 00 000 100

the next location 00 000 all

the next after that 00 000 001

and the next 00 011 100

and so on 10 000 000

11 100 100

Stop after this one 00 000 100

Checkyourself by readingthe contentsof the sevenlocationswhich start

with location 00 000 011. Do they agreewith the data above? If they

do not agree, try again. Try to find out why you went wrong.

When you are able to storethe numbersaboveand to readthem

correctlyI and while the data is in the computer, then try this experiment.

PushStart and releaseit.

What happensto the display lights? _

Do you think there is a pattern?

PushStop. What happens?

After you have stoppedthe computerI try this experiment. Set the

addressto 11 000 000. Enter the number 11 III III in the input buttons

and pushStore five times. Then pushClearwhich will make the entry

number00 000 000. PushStore five more times. Now set the addressto

11 000 000 (the sameas before) and readthe contentsof the ten locations

that start with this address.

Did you find that 11 III III was storedin the first five

locationsand that 00 000 000 was storedin the next five locations?

If you are storing the samedata into consecutiveaddressesI

must you re-enterthe numberwith the input buttonsafter the first

entry?-----

EX 2-3

Exercise3

In the first two exerciseswe learnedhow to store numbersin the

memory and how to readthem. The numbers\l\Tere binary I not our familiar

decimal. Binary numbersuse only the digits 0 and 1. A binary digit has

beengiven the specialnameI "bit n. A bit may be a 0 or 1 but it is never

a 2 I 3 I 4 I 5 I 6 I 7 I 8 I or 9 .

In Exercise2 I you were askedto store a seriesof numbersandI

after checkingthe entry by readingthesesamenumbersI you were asked

to pushStart. The output lights shouldhave startedblinking. The numbers

you storedin the memory were instructionsor commandsto the computerto

do some simple operations. This set of instructionswas a program. The

computerwas using this programover and over. As soonas it finished

doing the operationsonceI the computerwent back to the beginningof the

programand did the operationsagain.

In this exercisewe will load anotherprogramwhich is very similar

to the programin Exercise2. In this programthe computerhalts after it

doesthe operationsonce. It will do them onceagainwhen you pushStart.

As often a s you push StartI it will .do the requiredoperationsonceand

then halt.

Let1s load the programand seewhat is does. Startingwith location

00 000 all, store the following numbersin the memory:

Location Store

00 000 all 00 000 100

next 00 010 011

next 00 000 000

next 00 all 100

next 10 000 000

next 00 000 000

next 00 000 all

next 00 000 001

next 11 100 100

next 00 000 110

EX 3-1

Readthe numbersyou entered. Every bit must be right. If there are any

errorsI correct them by enteringall of the numbers.

PushStart once. The output lights shouldall be out. If you did not

get this resultI or if the Run light did not go out I you have probably

enteredthe numberswrong. Try againI re-enterall of the numbers.

PushStart once. The lights should now be 00 000 00. •

PushStart onceagain. The lights shouldnow be 00 000 oeo .

PushStart a few more timesI observinghow the lights change. Can

you tell in advancewhich lights will turn on and which lights will turn off?

Try to make up rules which tell you how the lights will change. PushStart

and seeif the lights do changein the way that your rule saysthey will.

Try this severaltimes. You may have to changeyour rules but keeptrying

until you canalways tell what the next patternin the lights will be.

If you want to start at the beginningagainI put the number00 000 100

into location 00 000 011.

You have beenaskedto find a rule about how the lights change. If

you did find a rule which told you what the next patternin the lights would

be I you have discoveredfor yourself how to count in binary.

EX 3-2

The rule which tells how the lights change might read:

Find the first light at or from the right hand
end that is Off. This light will changeto On.
All of the lights from the right hand end up to
this light I but not including this light I will
changeto Off. None of the other lights will
change.

Put the number00 000 100 into location 00 000 a11. This will

start you at the beginningagain. Try using the rule aboveto predict what

the next patternin the lights will be as you pushStarte

The rule abovealso tells us how to count in binary. All that we

haveto do is to changethe words "light ll to II bit II I nOnu to I, "Off ll to O.

Then, given a binary numberI the next binary numberis determinedby

the rule:

Find the first bit at or from the right hand
end that is O. This bit will changeto 1.
All of the bits from the right handend up to
this bit I but not including this bit I will
changeto O. None of the other bits will
change.

Let I S apply this to somebinary numbers.

,
This number 00 000 III

A.A

counts to 00 001 000

,
This number 00 001 000

A

counts to 00 001 001

t
This number 00 001 001

•
countsto 00 001 010

This is the first 0 bit from the
right end. Changeit to 1.

All of thesechangefrom 1 to O.

This is the first 0 bit from the
right end. Changeit to 1.

There are no bits to changefrom
1 to O.

This is the first 0 bit from the
right end. Changeit to 1.

All (in this case,one) of these
changefrom 1 to o.

EX 3-3

Put the number 00 000 100 into location 00 000 a11. PushStart

once. The lights should show you 00 000 000. We have written this

numberdown alreadyin the Table below. Before you pushStart again,

write down what the next numberwill be. PushStart and checkyourself.

Then write down the next numberand use Start to checkyour answer.

Repeatthesestepsuntil you have filled in the table.

0 0

0 0

0 0 0

0 1 0

0 0 0

0 0 1

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

The correct resultsare given on the next page. Checkyour numbers

againstthese.

EX 3-4

00 000 000 0

00 000 001 1

00 000 010 2

00 000 all 3

00 000 100 4

00 000 101 5

00 000 110 6

00 000 III 7

00 001 000 8

00 001 001 9

00 001 010 10

00 001 011 11

00 001 100 12

00 001 101 13

00 001 110 14

00 001 III 15

00 010 000 16

00 010 001 17

00 010 010 18

00 010 all 19

00 010 100 20

00 010 101 21

00 010 110 22

00 010 III 23

00 011 000 24

00 all 001 25

00 all 010 26

00 all 011 27

00 all 100 28

00 all 101 29

00 all 110 30

00 all III 31

Table 3. 1 First Few Binary Numbers

EX 3-5

Exercise4

Using Table 3. 1 from the last ExerciseI answerthesequestions..

What decimal numberis besidethe binary number00 000 001?

What decimal numberis besidethe binary number00 000 010?

What decimal numberis besidethe binary number00 000 lOa?

What decimal numberis besidethe binary number00 001 OOO?

What decimal numberis besidethe binary number00 010 OOO?

Write the sequenceof decimal numberswhich are the answers
to thesefive questions(start with 1) •

What do you think the next decimal numberwould be?------
What binary numberis the sameas this number?----------
What do all of thesebinary numbershave in common?------

The decimal sequenceis I, 2 I 4, 8 I 16 and the next numberin this

sequenceis 32 e This is the binary number00 100 000. All of thesebinary

numbershave one and only one bit that is a 1.

Now look in the Table at the binary numberbeside3. Can you see

that it has two bits which are lis? Canyou find the two binary numbers

that have single lis in thesepositions? Here they are:

00 000 001 1
00 000 010 2
00 000 011 3

What is the relationshipbetweenthe number3 and the other two
decimal numbers?

+ =

Let I S try anotherbinary number. Take the binary numberopposite6.

Which bits are 11s in it? Find the binary numbersthat have single 11s in

the samepositionsas thesebits.

What are the decimal numbers? and----- -----
How are thesenumbersrelatedto 6?--------------

EX 4-1

Do the samewith the binary number00 001 101. Find the three

binary numberswith single onesin thesepositions.

What decimalnumbersare oppositethese? _

What is the sum of thesethree numbers?-----------
What decimal numberis beside 00 001 101?--------

Use this sameprocessand find what decimal numbersare equalto the

binary numbers:
1001

III

1011

We know in a decimal numbersuchas 2, 736 that this does not mean

2 + 7 + 3 + 6. We understandthat the 2 is to be multiplied by a 1000I

the 7 by 100, the 3 by 10 and the 6 by 1. We call I, 10, 100, and 1,000

lfpl ace valuesrr •

Binary numbershave place valuesalso. They are the sequence

1,2,4,8,16,32,64,128,256,and so on.

A binary numbermay be convertedto decimalby adding up the place

valueswhere the binary numberhas I l s Cl Let1s do it for a few binary numbers.

PlaceValues

Binary Number
Binary Number
Binary Number

~ 1. .f.. 1
1 0 0 1

111
1 0 1 1

8 + 1 = 9
4+2+1=7
8+2+1=11

Earlier we askedyou to convertthesesamenumbersto decimal. Did you

get the answersshownhere? In the secondbi.nary numberaboveI we

didnIt put any bit underthe 8 I s place value. If we put a bit there, what

would we put there?

EX 4-2

Below is a small programwhich is a gameyou can play againstthe

clock. What you must do is to give the decimal number for a binary number

which the computerfirst displaysto you. If you are right I the computer

will give you anotherdifferent binary number. If you are wrong I the

computerwill give you the samebinary numberagain.

Load the following program. Notice that the addressesare consecutive

so you wonlt have to keepre-enteringaddresses.Double checkyour

entriesby reading. If you have a mistakeI you don't needto re-enterall

of the numbers. Use the addressgiven and correct the data which is in

error.

Location Data

00 000 000
00 000 001
00 000 010
00 000 011
00 000 100
00 000 101
00 000 110
00 000 III
00 001 000
00 001 001
00 001 010
00 001 011
00 001 100

00 000 000
00 000 000
00 000 000
00 000 110
00 000 000
11 III III
01 000 011
00 101 101
00 010 all
00 III 000
11 010 100
00 000 001
11 011 001

00 001 101
00 001 110
00 001 III
00 010 000
00 010 001
00 010 010
00 010 all
00 010 100
00 010 101
00 010 110
00 010 III
00 all 000
00 011 001

11 010 001
00 all 100
10 000 000
10 011 100
11 III III
00 000 000
11 011 001
00 000 all
10 000 010
00 all 100
00 000 100
11 100 100
00 000 100

PushStart. The computershoulddisplay 00 000 eoe in the output

lights.. This is the binary numberfor 5 0 You should push switch number5 I

DO .00 DOD. Whenyou do this I the binary numberwill disappearand

the light abovethe switch will come on. Now pushStart. If the entry is

correctI the computerwill display anotherI different I binary number. If

your entry was wrong I the computerwill display the samebinary number

again. Again make your entry and pushStart.

The largestbinary numberthe computerwill showyou is seven. The

smallestis o. The first time you seethe number0 given by the computer

you may think somethinghas gone wrong. It hasnIt. Try a few numbersto

seehow it goesI then get a friend to time you againstthe clock. How

many correct onescan you do in a minute?

EX 4-3

Exercise5

At the end of the last exercisewe were convertingbinary numbersto

decimal. In the first part of this exercisewe will do the opposite. The

computerwill give you a decimal numberfrom a to 7. You are to enterthe

binary numberwhich is equalto this decimal number.

The programto useis:

Location Data Location Data

00 000 000 00 000 000 00 010 000 10 all 100
00 000 001 00 000 000 00 010 001 10 000 000
00 000 010 00 000 000 00 010 010 10 all 100
00 000 all 00 000 100 00 010 all 11 III III
00 000 100 01 000 all 00 010 100 00 000 000
00 000 101 00 101 101 00 010 101 10 000 000
00 000 110 00 010 all 00 010 110 00 000 000
00 000 III 00 III 000 00 010 III 00 010 100
00 001 000 11 010 100 00 011 000 11 III III
00 001 001 00 000 001 00 all 001 11 all 001
00 001 010 00 all all 00 all 010 00 001 100
00 001 all 00 000 000 00 all all 00 001 all
00 001 100 00 000 all 00 all 100 00 100 100
00 001 101 01 000 010 00 all 101 00 000 100
00 001 110 00 all 100 00 all 110 11 100 100
00 001 III 00 010 100 00 all 111 00 000 110

Did you checkyour entries? PushStart. The computerwill display

00 .00 000 • Since light number5 is on, you shouldenterthe binary

numberDO DOD .0. in the switches. PushStart again. If your input

was correctI the computerwill display anotherI different decimal number.

If you were wrong, the computerwill display the samedecimalnumber

again. Try a few times to seehow it goesand then have a race against

the clock. With practiceyou can learnto usetwo and three fingers at the

sametime to enterthe binary number.

There are other numbersystemsbesidesbinary and decimal. One of

theseis called hexadecimal. There are sixteendigits in hexadecimal

numbers. Theseare the ten digits of decimal numbersand the six lettersI

A, B, C, D, E, and F. In hexadecimal,F + F = IE. Thehexadecimal

systemis closely relatedto binary, but we wonIt usethehexadecimal

system.

EX 5-1

Another numbersystemis called octal. The octal systemhas eight

digits: aI I, 2 I 3 I 4 I 5 I 6 I 7. You have beenworking with the octal

systemalready. For numbersfrom 0 to 7 I the decimaland octal numbers

are the same. The conversionproblemswe have beendoing are true for

both decimaland octal.

We will use the octal systema lot. It is very similar to binary and

it will make our work much easier. Though you may not be awareof it I you

alreadyknow how to convert a binary numberto an octal numberand

vice versa.

To convert a binary numberto octal, divide the binary numberinto

groupsof 3 bits startingat the right I for exampleI

001 101 110 010

Now write down the a to 7 octal digit that is equal to each3 bit binary

group above. In this casewe would have

1 5 6 2

To convert an octal numberto binaryI do this in reverse

3 740

all III 100 000

We wonIt learn any arithmeticrules for octal. We canconvert them

to binary and do the arithmetic in binary. HoweverI if there are no carries

or borrowsI then octal arithmetic is the sameas decimalarithmetic. For

exampleI all of theseadditionsand subtractionsare true for both octal and

decimal numbers:

250
+ __5

255

267
_3
264

146
+ ..-ll..

177

357
- 113

244

An octal numbersuchas 250 doesn1trepresentthe samequantity of

things as the decimalnumber250 does. For example,

Octal 10

Decimal 10

is this many things:

is this many things:
••••••••
••••••••••

EX 5-2

There is one arithmeticoperationwith octal numbersthat we use a

lot. That is counting. The easiestway of countingin octal is to count in

decimal, but to omit all of the decimal numberswhich have an 8 or 9 .

Completethe countsbelow. (Note that the countsgo down the page.)

5

6

7

10

11

12

13

14 46 75 112 035 207

With so many different kinds of numbers,how can one tell what

numbersystemis being used? For example,if you see III are you to

think of seven(in binary) or seventy-three(in octal) or one hundredeleven

(in decimal)? We may dependupon the contextor the settingin which we

seeit. As a price in a storeI we know it is decimal. In the computer

we are working with, the numberis usually octal. Sometimeswhen we

could be confusedwe will do one of the following:

binary III or 1112
or 111two

octal III or 1118 or III · htelg

decimalIII or 11110 or Illten

FOR INTERESTED STUDENTS (OTHERS NOT ALLOWED)

Bi- meanstwo. Binary numbersusetwo symbols.

Oct- meanseight. Octal numbersuseeight symbols.

Deci- meansten or tenth. Decimal numbersuseten symbols.

Hex- meanssix. Hexadecimal(6 + 10) numbersuse sixteensymbols.

Canyou give someother words that use bi-, oct-, deci-, or

or hex- ?---_._-----

What is odd about Octoberand December?

EX 5-3

How many sidesdoes a triangle have? _

What might you call the numbersystemwith three symbols?

Of all the numbersystemsthat are possibleI why do you think

we use decimalnumbers?------------------------
Could there be a numbersystemwith only one symbol?----
How many symbols doesthe tally system(1m JIll)use? _

Does the tally systemhave place values? _

In decimal, the place value namesare oneI ten, hundredI thousandI

etc. There are no agreedupon namesfor the place valuesin binary I octal,

and hexadecimal. We sometimesreadthe octal number 1,750 as lIoctal

one thousandsevenhundredand fifty. tr

What decimalnumberis this?

Must the binary systemusethe symbols 0 and 1? _

Could it usethe symbolsa and b?

Why would you prefer one set of symbolsto the other? -

Below we give the addition table for octal numbers. Fill in the empty

squares.

0 1 2 3 4 5 6 7

0 0 1 2 3

1 1 2 3

2 2 3

3 3

4

5 14

6 14 15

7 14 15 16

+

EX 5-4

Exercise6

In this Exercise,weIll learn how to add two binary numbers. Again,

weIII use the computerand a programto help us. The programwill add our

input number(enteredin the input SWitches) to a numberalreadyin the

computer. This numberin the computerwill be storedin an "accumulatorll it

OLD CONTENTS OF ACCUMULATOR
+ OUR INPUT NUMBER---NEW CONTENTS OF ACCUMULATOR

The addition takesplacewhen we pushStart& When the computerstopsI

it will display the new contentsof the accumulatorin the lights. As soon

as we pushClear or one of the input buttonsI the light s will then show

the input number. When we want to clearthe accumulator(set it to zero) I

weIll use input switch 7

.0 DOD ODD and Start clearsthe accumulator

Let I s load the program

and seehow it works.
Location Data

Notice that the addresses 00 000 000 000 000 00 000 000
00 000 001 001 000 00 000 000

and data have beengiven 00 000 010 002 000 00 000 000

in both binary and octal. 00 000 011 003 021 00 010 001
00 000 100 004 000 00 000 000

Try using the octal when 00 000 101 005 272 10 III 010

you enterthe data. When 00 000 110 006 377 11 III III
00 000 III 007 344 11 100 100

you readthe data to check 00 001 000 010 021 00 010 001

it, you shouldusethe 00 001 001 all 004 00 000 100
00 001 010 012 377 11 III III

binary. After a while we 00 001 all 013 034 00 all 100

will use only octal numbersI
00 001 100 014 200 10 000 000
00 001 101 015 134 01 011 100

but until you are familiar 00 001 110 016 377 11 III III
with the octal system 00 001 III 017 344 11 100 100

00 010 000 020 004 00 000 100
weIII also put the binary 00 010 001 021 023 00 010 all

numberdown. 00 010 010 022 000 00 000 000
00 010 all 023 344 11 100 100
00 010 100 024 013 00 001 all

EX 6-1

PushClear. PushStart. The lights shouldbe out.

Push switch O. PushStart. Repeatthesetwo severaltimes. Do

you seethebinary count processas we add one eachtime? Pushswitch 7.

PushStart. The accumulatorshould now be zero. Add somenumberto the

accumulator. ThenpushClear. PushStart. Did the accumulatorchange?

Are we adding zero to the accumulator?

What we want to do now is to find rules for adding binary numbers

on paper. The computerwill be usedto tell whetherwe are right or wrong.

We can try our ideaswith it. DonIt changethe binary numbersto decimal

and add. Do all of the work in binary. Try to do this in an orderly way

and organizeyour approach. Start with simple casesand little numbers

(like 0 and 1). Test your ideaswith the computer. After you have tried

awhile I comebackandfinish readingthe rest of this exercise.

There is more than one way to add. You may have found a way that

is different from the one to be given here. That doesn'tmake yours wrong.

When we learnedto add decimal numbers,oneof the first things we

learnedwas the addition table. With decimalnumbersI it was necessary

to learn 100 combinations. One suchcombinationwas 8 + 6 = 14. How

many combinationsdo you think there would be in binary? With 10 digits

for decimal numbersI there were 10 times 10 casesto be learned. With

only 2 digits for binary numbersI thereare only 2 times 2 casesto be

learned. And of thesefour casesI three of them consistof adding 0 to

anothernumber.

EX 6-2

The four casesare:

o
+-1.

1
+--!L

If you know the answersto thesefour problemsand if you know how to

"carry" I then you know how to add two binary numbers. Zero plus zero is

zero. Zero plus one is onee One plus zero is one. One plus one is two.

The numbertwo is written in binary as 10. So we have:

o
+-1.

1

1
+-1.

10

Adding one to one createsa carryin binary. The carry for binary numbers

is usedin the sameway as for decimal numbers. It addsone more in the

next column to the left. Let I s take the four casesaboveand also add

in a carry

1 .. 1 .. 1 ... 1 ...--- carry from

0 0 1 1 the right

+--!L +-1. +--!L +-1.
1 10 10 11 carry to

t t t the left

Notice that the sumI including the carryI is the binary numberfor the

numberof 11 s being addedtogether. For exampleI

1
1

+-1.
11

Let I S add two binary numbers

III 1

1010101
+ 1 1 1 a 1 1 0

11001011

3 11s being added

= 3 in binary

carry

first number
second number
answer

Give the sumsin the following additionsand then checkyour own

work with the computer.

1 0 a
+1 a 0 a

1 a 0 1
+_I_!L.Q.

1 0 1 0 1
+ 110

110 1
+__L..l..

1 0 0 1
+ III

1 1
+1 0 1 1

EX 6-3

While the programis in the computerI try theseexperiments.

Put 000 in the accumulatorI then keepadding 2. Theseare the even

numbers. Write the first few even numbersin binary.

Now put the number001 in the accumulatorI then keep adding 2. These

are the odd numbers. Write the first few odd numbersin binary.

What do all of the evennumbershave in commonthat the odd

numbersdo not have?

Do this addition
1 0 110

+ 1 0 110

How doesthe sum look comparedto the numbersbeing added?

Adding a numberto itself is the sameas multiplying by 2. Does

multiplication by 2 for binary numbershave somethingin commonwith

multiplication by 10 for decimal numbers?

What is the number2 in binary? _

Appendix I may be usedto convertoctal numbersto decimalor

decimal numbersto octal.

EX 6-4

Exercise7

We have beenusing programsin the computer. A programconsists

of instructionswhich tell the computerwhat to do. An instructionis a

numberin the computer. Different numberstell the computerto do different

things. In our computersomeof the instructionsrequire two memory

locationswhile other kinds of instructionsrequire one memory location.

The pair of numbersT would tell the computer:

r---------- 004
I 013 --------------,
I I

I-------I,~A COpy OF THE NUMBER IN LOCATION 013

TO THE CONTENTS OF LOCATION 000

AND PUT THE ANSWER IN LOCATION 000

If we changethe 004 to anothernumberI we would get a different

instructionI perhapsa Subtract. The 004 is the operationcode. The

secondnumberin this pair is an addressof a memory location. While in

this exampleit is 013, it could be any addressfrom 000 to 377. With this

instructionwe must always use the numberin location 000 as one of the

operandsand we must use location 000 to receivethe answer. We can't

changethat. The pair of numbersmu·st be storedin consecutivelocations

suchas 100 and 101. The 004 numberI the operationcode, must be in the

smallerof the two addresses.The memory address,suchas 013, is in the

larger of the two addresses.

When we put parenthesesaroundan address,for example,

(013)

we readthis as rtthe contentsof location a13 II •

EX 7-1

When we usethe notation

(000) :' (013)

we meanthat a copy of the numberin location a13 is to be madeand this

value becomesthe contentsof location 000. Notice that this kind of

statementis readfrom right to left. We will al so use statementslike

the following

(000) : (000) + (0 13)

It says, ([Add the contentsof locationa13 to the contentsof location 000

and then put the answerin location 000II. This statementI of courseI

describesour Add instructionabove.

Since the Add instructioncan use any location in memory for the

numberto add to the numberin location 000 I we could expressthe state-

ment as

(000) : (000) + (XXX), XXX = 000, 001,....•.•,377

The statementon the far right merely saysXXX can be any of the memory

addresses.Usually we will omit it. It l s just understoodthat it is so.

The single number 000 is an instructionto the computertelling it

to stop or halt. We call this an instruction "HaItH. Halt is an instruction

in the computerand the programtells the computerto halt. WeIII usethe

name Ii StopIf for the action of telling the computerI from the front panel,

to stop. It doesnot require any instruction. Both Halt and Stop produce

the sameresult. When the computeris haltedor stopped,it isnIt doing

anything. The Run light is out and we can store and readmemory locations.

When the Run light is on, the computeris doing the stepsof a programin

the computer. We canIt readand store data using the front panelthen.

EX 7-2

A computercan do only one instructionat a time. After doing one,

it will do another, followed by another,and so on. How doesthe computer

know where to begin? And how does it know where the next instructionis?

TH·E NUMB·ER IN LOCATION 003 T·ELLS THE COMPUTER

WHICH MEMORY LOCATION HOLDS THE NEXT INSTRUCTION.

After a11 Add instruction, the numberin location 003 is increased

by 2 sincethe Add instruction is containedin two locationsin the memory.

After a Halt instruction, the numberin location 003 is increasedby 1 since

the Halt instruction use·sonly one location in the memory. This adjustment

to the value of the numberin location 003 is done by the computerauto-

matically. We could expressthis symbolicallyI

for ADD,

for HALT I

(003)

(003)

(003) + 2

(003) + 1

WARNING A commonmistakethat studentsmake is to say that the

numberin location 003 is the next instruction. This is not correct. The

numberin location 003 is the addressof the next instruction. There is a

big differencebetweenthesetwo statements. Be sureyou understandthe

difference.

Let I S try the Add and the Halt instructionsin the computer. Load

the data in the Before column.

Comments

(000) + (164)
(003) + 2
(003) -}- 1003)

(000)
~ 0 0 3)

HALT

ADD

Location Before

000 250

003 100

100 004
101 164
102 000

164 005

PushStart. The Run light shouldgo out. Readthe memory locationsand

fill in the blanks in the After column above.

EX 7-3

Did the contentsof location 000 change?----------
By how much did they change?

What location holds this number?--------------
Did the contentsof location 164 change?

Did the contentsof location 003 change?---------
What do the contentsof location 003 now tell the computer?

Did (100) or (101) or (102) change?

Now here is a problemfor you to progranl. Write a four instruction

programto add togetherthe numbersin location 30I, in 302 I and in 303.

You can chooseyour own numbersto put in theselocations. Pick small

numbers. Welve written out a few of the locationsand data for you. Try

your programin the computer. When the computerstops,youIII have to

readthe contentsof location 000 to get your answer.

Location

000

003

100
101
102
103
104
105
106

301
302
303

000

Comments

Start with zero in location 000

Put first instructionhere

HALT

First number
Secondnumber
Third number

Try a different set of numbersin 30I, 302 I and 303. Don1t forget to put

the proper starting values in locations 000 and 003.

EX 7-4

Exercise8

Weill learn somemore instructionsin this Exercise.

This pair of numbers.-WOUld tell the computer:

r - - - - - - - - 014
I 237 - - - - - - - - - - - - -.,
I I

A COpy OF THE NUMBER IN LOCATION 237

FROM THE CONTENTS OF LOCATION 000

AND PUT THE ANSWER IN LOCATION 000

We can also give the resultsproducedby this instructionin this way I

(000)

(003)

(000) - (XXX)

(003) + 2 SUBTRACT

Operationcodeis 014

And this pair of numbersT would tell the computer:

r - - - - - - - -024
I 133 - - - - - - - - - - - - -.
I I

A COpy OF THE NUMBER IN LOCATION 133

INTO LOCATION 000

LOAD is a transferof data to location 000 from anotherlocation. The data

is not changedin any way. Our shorthandnotation for Load is I

(000) (XXX)

(003) (003) + 2 LOAD

Operationcodeis 024

EX 8-1

The pair of numbers-rwould tell the computer:

r------ 034
321 - - - - - - - - - - - -,

I
I
I
I
I
I

A COPY OF THE
NUMBER IN

LOCATION 000
INTO LOCATION 321

STORE is a transferof data from location 000 to anotherlocation. The data

is not changed. You may want to comparethis instructionwith LOAD.

We can expressthe Store instruction,

(XXX)

(003)

(000)

(003) + 2 STORE

Operationcode is 034

The Add, Subtractl Load, and Store instructionsall use memory

location 0000 It1s beginningto look as if location 000 is special. It is.

It is so specialthat

MEMORY LOCATION 000 IS CALLED THE "A REGISTER"

and THE (000) ARE CALLED "A"

The A Registeris important in the Arithmetic unit.

Location 003 is anothervery special location. In order that its

feelings won1t be hurt, we have given it a namealso.

MEMORY LOCATION 003 IS CALLED THE lip REGISTER"

and THE (003) ARE CALLED lip"

The contentsof the P Registerpoint to the next instructionin the program.

In our shorthandnotationwe could s"ay, for addition,

A:A+(XXX) p p + 2

Whethertheseare any betteror any worse than

(000) : (000) + (XXX) , (003)

we leave to your judgement.

(003) + 2

EX 8-2

Let I s write anothersmall program. Add the numbersin location 140

and 141 and from this sum subtractthe numberin 142. Before doing these

arithmeticoperations,A is to be set to 000 by the program. After the

arithmeticoperation,storeA in location 200. This will causethe answer

to appearin the output lights. Finally, we will halt.

Notice how this last paragraphcould be condensed,

1. A : a
2 . A : A + (140)
3 • A : A + (141)
4. A:A-(142)
5. (200) : A
6. HALT

Eachof thesesix statementscan be donewith one instruction.

Write a program (seebelow) from the six statementsabove. Choose

your own dataand load them with the programandtry it.

Location Data Comments--
003 320 P = 320

- -- ...&- .- - - ---- -
320
321
322
323
324
325
326
327
3,30
331
332
~ ,-. - ~ ~ - - ~ - --- -- . " , . ~ - ---...
140 First number
141 Secondnumber-
142 Third number
143 000 Zero

After you have written your programyou will probablyhave a 000 in

location 332. This 000 will be usedas a Halt instruction. We suggested

also putting 000 in location 143. This 000 was intendedfor useas data

to clear the A Register. Would one 000 be enough? Yes, we could use

only one. But it is poor practiceto needlesslymix the instructionsand

data and make one numberservefor both purposes. Try to avoid it.

EX 8-3

Exercise9

First let1s learn one more instruction. The number200 I as an

instruction, tells the computerto do nothing. Donlt laugh, the Do Nothing

instruction (also called No Operationor NOOP) is very useful.

Symbolically the instructioncauses

P : P + 1

OperationCode is 200

NOOP

That is, the contentsof the P Registeradvanceby 1 Q This action in itself

can be important to us.

We are going to usea new featureon the computerwhich we haven1t

usedbefore. From the front panelwe are going to make the computer

startI do one instructionI and stop. We alreadyknow that the .QLogram

can have the computerstop with a Halt instruction. From the front panel

we can make the computerexecuteone instructionand stop regardlessof

what this instructionis. This is called "Single Instructionll and when we

tell you to do a single instructionyou should do this:

Single Instruction 1. Pushand hold Stop

2. PushStart

3 0 ReleaseStart

4. Now releaseStop

Try this a few times to learn the patternof the actionsthat are required.

The single instructionfeatureis very helpful when you are studying what

is happeningin the middle of a program. You guessedit I that is what

we are going to do.

EX 9-1

Load this program. Do not pushStart. Answerthe questionsbelow.

If you have trouble answeringthe questionsI readthe last two exercisesagain.

Location Data Comments

003 240 P Register
200 000 Clear output lights

240 200 NOOP
241 024 LOAD A (060)
242 060
243 200 NOOP
244 344 ?????
245 241
246 000 HALT

What is the value of the P Register?

In what location is the first instruction?

What is the nameof this instruction?------------
How many locationsdoesthe first instructionoccupy?

What shouldthe value of P be after this instructionis done?

Do a single instruction (seethe first pageof this Exercise)•

ReadP (the contentsof location 003) •-------------
What is the name of the next instruction?----------
How many locationsdoesit require? _

What shouldP be after this instructionis done?-------
Do a single instruction. The P Registershouldbe equalto 243. Checkit.

Do a single instruction• Now P shouldbe equal to 244. Check it. (If it

isnIt I keep doing single instructionsuntil P = 244.)

Do a single instruction.

What valuesdoesthe P Registerhave now?-----_._--
Were you expectingsomethinglike this?-----------
From whereI do you think I this value of P came? (Hint I look in

the data above.)----------------------------
Do you think the P Registercan be changedin ways that we

havenIt talked about?

EX 9-2

I I

JUMP or I

BRANCH or 0 TO LOCATION ~
FOR THE NEXT INSTRUCTION

GO

The numberpair-r- tells the computer:

r-------- 344

I ~ ---------,

The normal next sequencefor locating the instructionsis changed by this

instruction. The locationXXX can be any memory location where it is

desiredto have the computergo for its next instruction. Not only doesthe

computergo to location ~ for its next instruction, but the P Registeris

also changedto this value.

We could look at this Jump instructionin this way:

r------
I
I
I

344
XXX ----,

I

THE NUMBER ~ IN LOCATION 003
(BUT DO NOT ADD 2 TO P)

When put this way I it emphasizesthat P is changed. Thesetwo descriptions

are the samethough we will usethe languageof the first description.

In our shorthandwe could say:

P XXX

OperationCode is 344 JUMP

When given in this way I the descriptionseemsso short that it is hard to

believethat it could be a very useful instruction. It is a very useful

instruction.

Do you seewhy an instructionof this type could be called Jump or

Branchor Go To? We preferthe name"Jump"•

EX 9-3

Let l s have somemore fun with the computer. Load this program.

Location Data Comments

000 000 A

003 150 P

150 004
151 154
152 344
153 150
154 001

Fill out line 1 below by readingthe contentsof the locations. Have the

computerdo a single i-nstructione Keep repeatingthis patternuntil all the

lines are filled in.

1.

2 8

3.

4.

5.

6.

7.

8.

A=
A= ---_.
A=
A= ---
A=
A=
A= -------
A= ----

p=------
p=----
p =
p=

p=------
p=

p=---
p=------

Let I S stop here, it could go on forever. From the values for A and P, can

you tell what the programis doing? Write a short statementtelling what

the programdoes .

EX 9-4

Herel s anothercompleteprogramto try. (The programis called

ChaseYour Tail.)

Location

003

Data Comments

100 P

100 344
101 100

Do single instructionsand look at the P values. PushStart and let the

computerrun. PushStop. What does this programdo?

Does it seemvery useful? _

EX 9-5

Exercise10

In the last exercisewe were studying the P Register. The contents

of the P Registerare the addressof the next instruction. We sawP advance

in a normal next sequence.Also we sawhow we could causethe computer

to breakthe sequenceof taking instructionsfrom an increasingseriesof

addresses.The Jump instructioncould be usedto make the computergo

to any location for its next instruction.

In this exercisewe will continueworking with Jump instructions.

Let I s start right off by loading a program.

Location Data Comments

000 000 A Register

003 100 P Register

100 024 LOAD A
101 360
102 044 ???
103 140
104 000 HALT
105 344 JUMP TO 100
106 100

140 000 HALT
141 344 JUMP TO 100
142 100

200 000

360 001

PushStart. The computershould stop. (Run light out) •

Readthe contentsof location 003.

PushStart again. The computershouldstop again.

Readthe contentsof location 003.-----------
Changethe numberin location 360 to 000. PushStart again. The computer

should stop.

Readthe contentsof location 003.------------
PushStart again.. The computershould stop.

Readthe contentsof location 003.------------
EX 10-1

You shouldhave different answersfor the P Registervalues. The first two

times they shouldbe the same. T.he last two times they shouldbe the same

but different from the first two times.

Does this have anything to do with the numberin 360?---
Changethe numberin 360 backto 001. PushStart. The computershould

stop_

What are the contentsof location 003?

Is the numberin 360 an instruction (Hint: Seebelow)?---
If you donlt know the answerto that last question,do single instructions

and look at the valuesof the P Registeruntil you repeata number. You

can write your P Registervalueshere:

Did the P Registerever indicatethat the numberin location

360 was to be usedas an instruction?---
The instructionin locations 102 and 103 sometimescausesa Jump

to location 140. Sometimesit doesnIt causea Jump. We seethat the

numberin location 360 may be involved. By changingthis number,

which isnlt an instruction, we can causethe computerto jump or not to

jump. Just prior to the Jump instructionin location 102 and 103 I the

instructionin 100 and 101 load A with the contentsof location 360.

DonIt you think the important thing may be what the A Register

contains?--------

EX 10-2

This instructionis called

JUMP, IF A EQUAL TO ZERO,
TO XXX

JUMP TO LOCATION XXX
FOR THE NEXT INSTRUCTION

The numberpair..-tells the computer:

r------ 044
I ~ ----------.

I

TAKE THE NEXT INSTRUCTION
IN THE NORMAL SEQUENCE

This instructionhas two possibleoutcomesdependingon whetherthe

A Registeris equalto zero or not. If the A Registeris equalto zeroI the

computerwill jump to locationXXX for the next instruction. LocationXXX

can be any locationwe desire. If the A Registeris not equalto zeroI no

Jump is madeand the following instructionis usedas the next instruction.

NO, A I 0

This instructionis called

JUMP, IF A NOT EQUAL TO ZERO I

TO XXX

JUMP TO LOCATION XXX
FOR TH"E NEXT INSTRUCTION

The numberpair---r-tells the computer:

r- -- - - - 043
I XXX ----------,

I

TAKE THE NEXT INSTRUCTION
IN THE NORMAL SEQUENCE

Do you seethe difference? Comparethe words until you find the difference.

Write an explanationfor what this instructiondoes (seethe one above)•

EX 10-3

EX 10-4

Exercise11 (Double length)

In this Exerciseweill analyzea problem and write a programto

solve it.

The Problem

We want the computerto be a combination

lock. Weill useonly the 0 to 7 digits and

weIII require only a two numbersequenceto

openit.

6

o

4

2

The lock would be a better lock if the sequencewere longer, but we want

to keepit simple and we want to II crack the safe If. It I S fun to crack the

safe.

If the code were 57, then the entry of a 5 followed immediatelyby

a 7 will openit. (Weill ignore clockwiseand counter-clockwiseturns)•

The programshouldallow the codesto be changedeasily.

For input, weill use a single button suchas DD .DD DDD for 5.

We could use binary numbersbut that would be more buttonsto push. When

the lock is open let l s have the computerturn on all the output lights. We

needtwo variablesthat describethe first and secondcodes. Let these

two be Xl andX2. Weill storethem in the sameform as the input.

Flow Charting

Right now we are not going to describeany rules for flow charting.

We wonlt evendefine a flowchart. Weill just do somethings that come

naturally to us. First I we haveto start somewhereso let I s put that down.

(START)

I
We must get an input number. For the moment let1s skip the fol-do-rah

abouthow we get the input number.

G'ET INPUT
NUMBER

EX 11-1

When we have the numberwe want to know whetherthis is equalto Xl.

Sincethis is a questionand not a statementof action, letls use a different

enclosure.

Welve drawn two lines leaving the

diamond,onefor NO and one for YES.

In casethe answeris NO we should start

over andgetanotherinput number. If

the input numberis equal to Xl, we

must rememberthe code is half-broken

and we must now comparethe input

againstX2.

GET INPUT
NUMBER

GET INPUT
NUMBER

Looking at the NO branchof this X2 test, the secondinput character

did not equalX2. The code isnIt broken. But this input charactermight be

EX 11-2

equal to Xl so we shouldtest for that.

Why? Considerthis:

45 Combinationthat opensthe lock

445 Portion of input sequence

The 4 here passesthe Xl testf

This 4 fails the X2 testI ----..

but this second4 plus this 5 shouldopenthe lock.

Looking at the YES branchI

the code is brokenand we

shouldturn the lights on. After

turning the light s on I let I s go

backand be ready to play again.

GET INPUT
NUMBER

GET INPUT
NUMBER

We seethat we should

make provision for turning the

lights off. So we addedone

more box to the flow chart to

remind us to do that.

LIGHTS ON

NO

EX 11-3

Input and Output

Let I S take a little time to talk about input and output in our computer.

Whatevernumberwe enterwith the input switches,including ClearI

appearsin location 377. This location is usedto assembleor to gather

togetherthe bits of a numberwhich we are entering. This happenswhen

the computeris running or when the computeris stopped.

When the programis ready for anotherinput I we will have it halt.

The personentershis input and startsthe computeragain. With the

computerrunning againI the programcan take the contentsof location 377

as the input.

Before halting for the input, we will have the programstorethe number

000 in location 377. This is the sameas if the personpushesClear. We

do this to savea personfrom having to pushClear. Our input sequence

will be

Storethe numberaOOin location 377

Halt

When the programstartsagain

The input numberis in location 377

For output, the programwill store a numberin location 200. When

the computeris in Run, the contentsof location 200 control the display

lights. When the computerstops, the contentsof location 200 continueto

be displayeduntil the operatormakesanotherchoice for the display.

The Program

Let I s now usethe flow chart and the commentswe have madeabout

input and output to write a sequenceof instructionsfor the computer. Let IS

begin with the box on the flow chart that saysSTART. The first thing to do

EX 11-4

is to get an input number. Weill have the programclear location 377 and

halt. Weill put the first instructionthat we write in location 100.

Location

100
101
102
103
104

Data Comments

024 Load A with the number000
376 Location 376 is to hold 000
034 StoreA in location 377
377
000 Halt

When the computerstartsagain, the input will be in lo'cation 377. Before

we usethis input weill clearthe output in location 200. We seefrom the

instructionsabove, that A is 000. So

105
106

034
200

StoreA in location 200

To determinewhetherthe input is equalto the Xl codeI we can use

theseinstructions

107
110
III
112

024
377
014
375

Load A with the input
Input is in location 377

Subtractfrom A the Xl code
HaveXl in location 375

DonIt let the word It codeII confuseyou. It I s just a number.

The Jump instructionwhich jumps on A not equal to zero will complete

the action requiredby the first diamondin the flow chart

113
114

043
100

Jump, A"I 0, to 100

Taking the YES path from the first diamond, we haveto get another

EX 11-5

input number. We III usethe samepatternof three instructionsas we

usedbefore

Location

115
116
117
120
121

Data Comments

024 Load A with the number000
376 We had 000 in location 376
034 StoreA in location 377
377
000 Halt

When the programstartsagainwe will determinewhetherthe input is equal

to the X2 code.

122
123
124
125

024
377
014
374

Load A with the input
Input is in location 377

Subtractfrom A the X2 code
Have X2 in location 374

zero

The NO branchfrom this seconddiamondis to be takenif A is not

126
127

043
107

JumpI A I aI to location 107

We determinedthat 107 was the addressto use by comparisonto the flow

chart.

If A was equalto zero after the last subtractionI the lock has been

opened. To turn the lights on

130
131
132
133

024
373
034
200

Load A with the number377
Put 377 in location 373

StoreA in location 200

Now the programshouldgo back and start over again

134
135

344
100

Jump to location 100

EX 11-6

We have omitted one other location that is importantg Do you know which

one? Location 003 which holds P shouldhavethe value 100 sincethe first

instructionthat the computerwas to executewas in that location.

Let I s put all of the instructionsI data and constantstogether.

We have

Location Data

003 100

100 024
101 376
102 034
10,3 377
104 000
105 034
106 200
107 024
110 377
III 014
112 375
113 043
114 100
115 024
116 376
117 034
120 377
121 000
122 024
123 377
124 014
125 374
126 043
127 107
130 024
131 373
132 034
133 200
134 344
135 100

373 377
374 X2
375 Xl
376 000

Xl andX2are chosenfrom thesecodes

For Input Digit Xl andX2 Code

a 00 000 001
1 00 000 010
2 00 000 100
3 00 001 000
4 00 010 000
5 00 100 000
6 01 000 000
7 10 000 000

Determinedby the operator

First I try the programwith codesof your choosing. Seeif the program

works. Then seeif you can get a friend to load Xl andX2 codes. Can 2'OU

openthe lock then?

EX 11-7

Exercise12

The final programthat we developedfor the lock programis hard to

II readll and understand. It is very desirablethat we be able to understand

our own programs. When we first write a program, it probablyhas some

errors in it. Perhapswe usedan Add instructionwhen we shouldhave used

a Load instruction. Or the program jumps to the wrong instruction. Before

we can make changesto a program (and we will do a lot of changing),we

must understandwhat we have done already. A list of locations"and their

data contentis a poor way of expressingour thinking. It is true that this

is exactly what the computerrequires. It is the only thing that it understands.

But we needsomethingmore than three numbers. While Ifsomethingmore"

soundslike extra work, it will saveus effort and time. Let's seewhat

this II somethingmorel! is. Here is an exampleof it.

Symbolic
Address

A
P

ONE
OUTPUT

BEGIN

Can you readthis as a program?

Contentsof
Location

000
BEGIN
001
000

ADD A ONE

STOREA OUTPUT

JUMP BEGIN

Scanningthis quickly, we can seethree instructionsat the bottom.

But insteadof using numericaladdresses,they usethe words ONE, OUTPill I

and BEGIN. All of thesewords appearalso in the SymbolicAddresscolumn.

OppositeONE we seethe contentsof the location are 001.

EX 12-1

Thus we begin to form the idea that

SymbolicAddress

ONE

Contents

001

ADD A ONE

may in someway meanan examplelike this

Location

135 001

ADD A (135)

where the 135 could just as well be any other numericaladdress. Thus the

use of ONE would be similar to the useof x in algebra.

ONE is a symbolic address. It standsfor or representsan address

which is not yet known. When we use symbolic addressesit is understood

that we don't use parenthesesthat normally would be required.

When we usethe label ONE with the constant00I, it is obvious that

we were thinking about the contents. It is a symbolic addresswhich is

descriptiveof the contentsof the location.

What doesthe programdo? The first instructionaddsone to the

A Register. The secondinstructionstoresA in OUTPUT which will control

the display lights. The third instructiontells the programto start over. The

programcycles continuouslyadding one to the A Registerand putting these

valuesout to the display lights. The display lights will showthe binary

counting process.

Notice that we can write the program, readit and talk about it even

thoughthe instructionsand the constantONE have not beenassignedmemory

locations. The way the computerwas designeddeterminesthe locations

for A, P, and OUTPUT, but it is not importantat this stagein the development

of the programto rememberjust what theseare. We do haveto understand

the functions of the A RegisterI P RegisterI and the Output location0

EX 12-2

When we write programs,we will first write a symbolic program.

We wonlt eventalk about memory locationsuntil we think that we have a

correct program. Only then will we assignlocationsand specify the com-

plete data contentof theseloc"ations. This final stepis simple and easy

to do. But we will do it last.

How do we translatethe symbolic programto numeric codes? Look

at the examplebelowII

Loc Data Symbolic
ContentsAddress

000 A 000
003 P BEGIN
200 OUTPUT 000

BEGIN ADD A ONE

STORE A OUTPUj

JUMP BEGIN

ONE 001

We startedby putting A, P, and OUTPUT on the top lines. The locations

assignedto theseare known and canlt be changed. So we put them down

and got them out of the way. Belr)w thesewe put the instructions. We

spacedthe instructionsso that there would be as many memory locations

as eachinstructionrequired. Somewill require two and sometake only

one location (here all instructionsrequire two locations). After the

instructionswe put the contant001. We could have useda different order.

We could have put the constantbefore the instructions. Be we couldnIt

put the constantONE betweenthe ADD and STORE instructionsQ

Next we completethe assignmentof locations. Except for the reserved

locations 000, 00I, 002 I 003 I and 200 I 20 I, 202 I 203 and 377I we can

make most any choice for the first instruction. Location 004 is a very good

choice. With this determinedI the locationsof the rest of our instructions

are also determined. Weill assignONE beginningat 204. Then if we

EX 12-3

add more instructionsto the programI we wonIt have to move ONE.

Loc Data Symbolic Contents
Address

000 A 000
003 P BEGIN
200 OUTPUT 000
.-...-.. .- ~ ~ - - .- ~ - - -"""~- - -- -

004 BEGIN ADD A ONE
005
006 STORE A OUTPU1
007
010 JUMP BEGIN
all
~ _-A.....A ,,~~ ~

204 ONE 001

With the locations now assigned,we can fill in the Data column.

Someof the entriesin the Data column donlt dependupon the location

assignmentand could have beenfilled in earlier.

For location 000, its contentsare definedto be 000.

For location 003 I we defined (by BEGIN) that it shouldbe the address

of the location which is labeledBEGIN. We seethat this is 004.

For location 200 I its contentsare definedto be 000.

For location 004, we usethe operationcode for ADD (004). (This is

just a coincidencethat location 004 contains004.)

For location 005 I the instructionrefers to a location namedONE.

The addressof ONE is 204.

For location 006, the operationcode is 034.

For location 007, the addressassignedto OUTPUT is 200.

For location 010, the operationcode is 344.

For location OIl, the addressfor BEGIN is 004.

For location 204/ it is definedto be 001.

EX 12-4

Hencewe have,

Loc Data Symbolic ContentsAddress

000 000 A 000
003 004 P BEGIN
200 000 OUTPUT 000

.-. - - -~ ..-A .-.... ~- -- ~ ' V f T - - -
004 004 BEGIN ADD A ONE
005 204
006 034 STORE A OUTPUl
007 200
010 344 JUMP BEGIN
all 004
~ - - l - - v ~ .- -1\1'-.-- -. ~~~. -- -- '--"

204 001 ONE 001

EX 12-5

Here is a symbolic programfor you to convert to numbersfor the

computerto use.

Loc Data Symbolic ContentsAddress

A (DoesnIt Matter)

P START

OUTPUT 000

INPUT (DoesnIt Matter)
~ ~ ~ ~

START LOAD A ZERO

STORE A INPUT

HALT

LOAD A INPUT

STORE ANUM

ADD A NUM

STORE A OUTPU1

lUMP START

~ ~ ~ ~...,~~~

ZERO 000

NUM (DoesnIt Matter)

After you convert the programI try it in the computer. PushStart.

The computerwill halt. Enter some numberwith the switches. PushStart.

The computershouldhalt again. The numberdisplayedshouldbe twice

your entry. You can repeatthis.

EX 12-6

Exercise13

Jackhad a die (one die I two dice) which he thought might not be

fair. It seemedto him that some numberscame

up more often than they should. We agreedto

usethe computerto help Jacktest his die. Jack

would roll it and call the number: I, 2 I 3, 4,

5, or 6. We would keepa tally in the computer

for eachof thesesix numbers. For example,

when Jack rolled the number 3 we would increasethe count for 3 by one.

When Jackhad rolled the die a large numberof timesI we would compare

the counts for the six numbers.

WeIII use six locationsin the memory to hold the counts,onefor

eachof the six possiblenumbersthat Jack might roll. To startI eachof

theselocationswill contain000. Let I s choosetheselocations: Location

301 for the tally on number I, 302 for the tally on number2 I 303 for

number3 I 304 for number4, 305 for number5 I and 306 for number6.

One very straight forward solution is given in the flowchart below:

GET INPUT (Let INPUT = N)

A: A + 1

A: A + 1

A: A + 1

A: A + 1

A: A + 1

A: A + 1

EX 13-1

The instructionsto get the input and to test whetherit is equalto

I, 2, 3 I 4, 5, or 6 are simpleIII And the stepsto increasethe tally count

for one of the numbersare easyenough. Let1s seewhat it would take to

increasethe tally for 3 by one.

LOAD A (303)

ADD A ONE

STORE A (303)

JUMP START

ONE 001

To increasethe tally for 4 by one, the instructions would be:

LOAD A (304)

ADD A ONE

STORE A (304)

JUMP START

There would be a similar set of instructionsfor eachof the six counts.

Is there a way we can write the programso that fewer instructions

are required? There is. We can havethe computerchangeits own

instructions.

Note that our typical tally sequenceis

024 LOAD A (30X)
30X ADDR 1
004 ADD A ONE

034 STORE A (30X)
30X ADDR 2

whereX is 1, 2 I 3 I 4, 5, or 6 dependingon the numberthat Jackrolled.

EX 13-2

We will have the programchangethe value of X in the two locationsI

ADDR 1 andADDR 2. Then thesethree instructionscan be usedto tally

for all of the numbers. Very broadlyI the programwill do thesethings:

CHANGE ADDRESSES

DO TALLY

To do the tally, we will use the instructionsin the typical tally

sequenceabove. To changethe addressesI we can usetheseinstructions:

LOAD A K300

ADD A (377)

STORE A ADDR 1

STORE A ADDR 2

K300 300

The first of the instructionsloadsA with the number300 (storedin

symbolic location K300). The input numberin location 377 is addedto

this. The A Registerthen contains30I, 302 I 303 I 304, 305 I or 306.

This numberis storedin symbolic locationsADDR 1 andADDR 2. We

needonly one tally sequence.

Our completeprogram, in symbolic form I is given on the next page.

EX 13-3

ADD A
004

SUB A
014

LOAD A
024

STOREA
034

HALT
000

JUMP
344

Loc Data
Symbolic Contents CommentsAddress

000 A - - -
003 P START

377 INPUT - - -
200 OUTPUT 000

START LOAD A ZERO Get input

STORE A INPUT

HALT

LOAD A K300 Form address

ADD A INPUT

STORE A ADDR 1

STORE A ADDR 2

LOAD A (3QX) Do tally

ADDR 1

ADD A ONE

STORE A (30X)

ADDR 2

STORE A (ZOO) To display tally

JUMP START

ZERO 000

K300 300

ONE 001

301 000 Tally for 1

30Z 000 Tally for Z

303 000 Tally for 3

304 000 Tally for 4

305 000 Tally for 5

306 000 Tally for 6

EX 13-4

We addedone instructionto the symbolic programwhich we didnIt

discuss. We storedthe new tally count in the output register.

The symbolic programhas a very seriousflaw. It does work correctlyI

but it will acceptany number (from 000 to 377) as input. To showa

problemwhich can ariseI supposeyou put your first instructionin location

340 It Then supposeyou use the number040 as input. The programwill

changethe instructionin 340 insteadof one of the valid tallies. No

matterwhere you put the instructionsI a similar situationcan occur. The

programcan destroyitself. Good programsare not sen.sitive(can!t be

damaged)by bad input data.

Here is an interestingexperiment. Completethe symbolic program

and load it It Take a II randomli pagein the telephorledirectory. Use only

the last digit of eachtelephonenumber. Use only the I, 2 I 3, 4 I 5 I and

6 digits and skip the numbersending in a 0 I 7 I 8 I or 9 digit. Use the

computerto tally a couple of hundreddigits. Do you think they occur

with equalprobability? Here are the resultsof one suchtest:

numberof 11 s
numberof 2 I S

numberof 3 I S

numberof 4 I S

numberof 5 I S

numberof 6 IS

Total

27
22
23
20
18

-l1.
123

(decimal)

In this examplewe should concludethat thesedigits are not

distributedevenly. The probability that a teleph.onenumberendsin a 1

is much higher thanthe probability that it endsin a 6.

EX 13-5

Exercise14

In the last Exercisewe storedour variable dataI the talli;es I in a

very orderly way. We took advantageof this to have the programchange

the addressesit used. Again and againwe will seethe advantageof

storing the data in a systematicway. Weill seeit againin this Exercise.

Weill also seea new principle.

We want to look at the problem of adding 50 small numberstogether.

Thesemight be the numberof runs that a baseballteam scoredin 50 games.

Letls assumewe have these50 numbersin consecutivelocationsin the

memory startingat location 204 and endingwith 265 (both octal) .

We could usea set of instructionslike the following to addthe

50 numberstogether:

Lac Data Symbolic ContentsAddress

LOAD A ZERO

ADD A (204)

ADD A (205)

and so on until
ADD A (265)

How many instructionswould be required?--------
How may locationsin memory would be requiredto hold these

instructions?-------------------------,
Letls look at anotherway. After the computerhas done the

secondinstructionaboveI do you think it could add 1 to the addressin

this instruction?----------------------------

EX 14-1

It couldI and the instructionwould now be

~ _ - - - - I ~ __[+-I_A_D_D_A--a.(__20.....50.&0.>_~

If the computernow did this instruction,it would add in the secondof the

fifty numbers. Let I s examinea set of instructionswhich would do this.

100 024 BEGIN LOAD A ZERO
101 302
102 004 LOOP ADD A (Z04)
103 204 ADDR
104 034 STOREA SAVESUM
105 300
106 024 LOAD A ADDR
107 103
110 004 ADD A ONE
III 301
112 034 STORE A ADDR
113 103
114 024 LOAD A SAVESUl'v1
115 300
116 344 JUMP LOOP
117 102
300 --- SAVESUM ---
301 001 ONE 001
302 000 ZERO 000

Let I S examinethesein some detail. Start with the instructi.onin

location 100 and 101. Ansvver the statementsbelow as true or false.

After the 100/101instruction, A is 000. • • . . . • T F

After the 102/103 instruction, A is the first

of the 50 numbers. • • 0 • • • • • • • • • • • • •

StoringA in SAVESUM savesthe numberin the A Register.

We want to use the A Registerfor anotherpurposenow.

• T F

After the 106/107instruction, A contains204. . T F

After the 110/111instruction, A contains205. T F

After the 112/113 instructionI ADDR contains205. . T F

EX 14-2

After the 114/115instruction, A is restored

to its value after the 102/103instruction. . • • • . . •

The next instructionafter the one in 116/117

is the instructionin 102/103. • . . • • . . • . . • •

After doing the instructionin 102/103I A will

containthe sum of the first and secondnumbers.

Eventuallythe computerwill stop. •

T

T

T

T

F

F

F

F

Thesestatementsare all true exceptthe last one. UnfortunatelyI

it is false. Theseprogramstepshave no end. The fifty numberswill be

addedtogetherbut then the programwill continueto add everythingelse

in the memory to this sum. And it will stay in this cycle forever.

Letls look at how we can stop the programfrom looping back after it

has addedthe fifty numberstogether. There is an easyanswer. If the

numberwe store in ADDR is 266 (by instruction 112/113)I then we have

addedthe fifty numberstogetherI no more I no less. This test can be made

by insertingtwo new instructionsafter the onesin 112/113.

SUB A K266

JUMP A=O END

K266 266

where END is the beginningof the instructionsto finish the job. They

might be

END LOAD A SAVESUM

STORE A OUTPUl

HALT

which picks up the answerin SAVESUM and puts it in the display lights.

The programthen stops.

EX 14-3

If we wantedto re-usethe program, we would haveto set the

P Registerback to BEGIN and we would have to restorethe numberin ADDR

to 204. We could havethe programdo thesethings.

We include thesefeaturesin the symbolic programon page 14-6.

In this programhow many locationsare requiredfor instructions,

constantsI and variables (but not for the 50 numbers)?---------
Is this a savingI comparedto our first method?-----
By the time we completedthe programthere were 51 numbersto

add together. What one location (other than the location for the 51st

number) must be changedin the programto do this?---------
What shouldthe new value be?

When you try the programin the computerI here are 50 rlumbers to

add together

00000 11111 22222 33333 44444 55555 66666 77777 88888 99999

The correctansweris 225 (= 341 octal). Now changethe five 0 I s to

9's. The correctansweris now 270 which is equalto octal 416.

What answerdoesthe computergive you? _

Can you show the octal number416 at one time in the

lights?

EX 14-4

Below we give a flowchart for our program. The terminologyis a

little different. N(i) is the i
th

number. We start by having i equalto 1

and we add the first number. We increasei by 1 and add the second

number. When the value of i is 51, we stop looping.

i : 1

SAVESUM: 0

SAVESUM: SAVESUM + N(i)

NO

OUTPUT: SAVESUM

EX 14-5

ADD A
004

SUB A
014

LOAD A
024

STOREA
034

JUMP A=O
044

JUMP
344

HALT
000

Loc Data Symbolic Contents Comments
Address

A
P BEGIN

OUTPUT
BEGIN LOAD A K204 Initia 1···conditions

STORE A ADDR

LOAD A ZERO

LOOP ADD A (204) Basic add
ADDR

STOREA SAVESUM SaveA

LOAD A ADDR Form next address

ADD A ONE

STORE A ADDR

SUB A K266 Last Address?

JUMP A=O END Yes I if jump

LOAD A SAVESUM RestoreA

JUMP LOOP Loop back

END LOAD A. SAVESUM Display Sum

STOREA OUTPUT

HALT
rUMP BEGIN To start over

K204 204
ZERO 000

SAVESUM ---
ONE 001
K266 266

EX 14-6

Exercise15

Have you beenwonderingabout negativenumbers? Perhapsyou have

beenhoping that a deviceas real as a computerdidn1t use negative

numbers. Sorry about that, but negativenumbersare justasrealas positive

numbersandthe computercan use both kinds.

Let I S do a little exploring with the computer. Load this program.

000 --- A -_
003 004 P START
377 --- INPUT ---
200 000 OUTPUT 000
004 024 START LOAD A ZERO
005 017
006 034 STORE A INPUT
007 377
010 000 HALT
all 014 SUB A INPUT
012 377
013 034 STORE A OUTPUT
014 200
015 344 JUMP ST.t.l.\RT
016 004
017 000 ZERO 000

This program loads A with 000 and then subtractsthe numberin

the input (location 377) from A. The result is displayedin the lights.

Weill subtractsomesmall positive numbersfrom zero and seewhat answers

the computergives us. To usethe programpushStart and enter the number

whenthe computerstops. Then pushStart and the lights will show the

result of subtractingthis numberfrom zero. Completethe table on the

next page.

EX 15-1

From 00 000 000 subtract and we get

0 00 000 000 00 000 000 a
+1 00 000 001 11 III III -1

+2 00 000 010 -2

+3 00 000 all -3

+4 00 000 100 -4

+5 00 000 101 -5

+6 00 000 110 -6

+7 00 000 III -7

~ 8 00 001 000 -8

rt-9 00 001 001 -9

The numbersin the right handcolumn are what the computersuggests

for the first few negativenumbers. If you have done your work correctlyI

you shouldbe able to take + and - entry on the sameline and add them

togetherand get 00 000 000. For example:

+7 00 000 III
-7 11 III 001

1 00 000 000

When we do this I we get a carry out of the left most column. In the

computerthere is nowhereto put this bit. It is droppedand only the

eight bits on the right are retainedc Therefore,we seethat what t11.e

computergeneratesfor the negativenumbersmeetsthis test:

x + (-x) = 0

Can we count with thesenegativenumbers? Counting up is adding

one. Here is an example:

-4 11 III 100
+1 00 000 001
-3 11 III 101

That was the correctanswer. Here are two for you to do and check

againstthe table:

-8
+1
-7

11 III 000
00 000 001

-3
+1
-2

11 III 101
00 000 001

EX 15-2

If you can count, you can add. Adding x + y is nothing more than starting

with x and counting up from there y times.

Can we count down with thesenegativenumbers? Counting down

is subtractingone. For example:

-4 11 III 100
- (+1) - 00 a00 001

-5 11 III 011

which is equalto minus five. If you can count down, you can subtract.

How can we tell a positive numberfrom a negativenumber? If we

were to extendthe table we startedearlier, we would seethe positive

numbershavea 0 in the left most bit andthe negativenumbershave a 1.

Thus the left most bit becomesthe sign where

a is +
1 is -

How can you reada negativenumber? Here are two methods:

Method 1. Subtractit from 00 000 000 and this gives you the positive

magnitudeof the number. For example,given 11 101 all

00 000 000
- 11 101 011

00 010 101 = 25

so the original numberwas -25 octal or -21 decimal•

.Method 2. InterchangeO·s and 1as in the negativenumberI readit as a

binary numberand thenadd 1 to the answer. For exampleI given 11 III 0 II,

readthis as 00 000 100 I which is 4, and thenadd 1. Hencethe number

is -5. This is a handy methodfor very small numbers.

EX 15-3

In this Exercisewe have statedthat a numberwhosemost significant

bit was a 1 was a negativenumber. For exampleI

341 (= 11 100 001)

would be -37 octal. In earlierExerciseswe have talkedabout the number

341 as though it were the positive number341. Which is the correct

answer? Both are. The computerworks equally well with both interpre-

tations. It is our choice whetherwe wish to interpret the bit pattern

11 100 001 as +341 or as -37 (both octal).

If the natureof the problemallows it I we may considerthenumbers

as positive whole numbers. Then

our smallestnumberis 00 000 000 (= a
and our largest numberis 11 III III (= +255 decimal)

When we are doing addresscomputations(as we were in the last Exercise)I

this is appropriatebecausethe addressesare always consideredto be

positive •

If the natureof the problemrequirespositive and negativenumbers,

then the numberrepresentationthat we introducedin this Exerciseis

appropriate. In this caseI

the smallestnegativenumberis
the largestnegativenumberis
zero is
the smallestpositive non-zeronumberis
the largestpositive numberis

10 000 000 (= -128 decimal)
11 III III (= - 1)
00 000 000 (= 0)
00 000 001 (= + 1)
01 III III (= +127 decimal)

In both of theseinterpretationsI the decimalpoint is as the far right.

Again, it is our choicewhere we wish to put the decimalpoint (or binary

point). We could have it in the middle or at the far left or somewhere

outsidethe byte. The computerdoesnIt care. Of courseI when you have

the computeradd two numbersyou must considerthe decimal point in

both of thesenumbersto be in the sameplace.

EX 15-4

We now posea problemfor you to programa solution. Write a

programto add x and y (both positive numbers)by only adding and

subtractingone. We illustrate the techniquewith a small exampleof

adding 2 + 3.

Ad.d 1
2

+1
3

Start with

"'0
3

-1
2

Subtract1

3
Add 1 +1

4

4
Add 1 +1

5

"This is the answer.

2
;:l Subtract1

1

1
;:l Subtract 1
o

)J
Stop when you get a 0 here.

Mter you have done this, you canchangeone instructionandthen

the programwill do x -y. Try this with valuesof x and y that would

generatenegative numbers. About a dozeninstructionsare required.

On the next pagewe give a work form you can use.

EX 15-5

ADD A
004

SUB A
014

LOAD A
024

STORE A
034

HALT
000

JUMP
344

JUMP A=O
044

JUMP Alo
043

Lac Data Symbolic Contents CommentsAddress

EX 15-6

Exercise16

Supposethat we had the problem of writing a programto find the

larger of two numbers. It can be done with the instructionsthat we have

learned. You might like to take sometime and try this. We give a short

analysisbelow.

If we have two non-zeronumbers, U and V, and we want to

determinewhich is the largerI we could subtractthe number 1 from each

of them. After the subtraction,if the number U has beenreducedto 0

but V hasnIt, then V is the larger number. If both are zero after the

subtraction,then they are equal. If neitherone is zero, thenwe could

subtract 11s againand repeatthe test. Here are two examples:

1

U V

3 2
.::l. .::l.

2 1

2 1
.::l. .::l

1 0

Subtractagain

U is larger

2

U V

2 2
.::l. .::l.

1 1

1 1
.::l. .::l

0 0

Subtractagain

Equal

So while we can determinewhich of two numbersis larger without

any new instructions,we will seethat it becomesmuch easierwith some

new Jump instructionsthat we will learn now.

In addition to jumping on A zero or jumping on A not zero, we

also have

Jumpif A is negative

Jump if A is zero or positive

Jumpif A is positive (and not equal to zero)

Theseinstructionsusethe sign conventionthat we learnedin the last

Exercise. A is negativeif the most significant bit (the left handone)

is a 1. A is positiveI but possiblyzero, if the most significant bit

is a o. A is zero only if all eight bits are zero.

EX 16-1

Let I S use the following programI to study our fi ve conditiona1 Jump

instructions.

Loc Data Symbolic Contents CommentsAddress

000 --- A ---
003 010 P START
377 --- INPUT ---
200 000 OUTPUT 000

004 024 YES LOAD A K200 200 = "yes"
005 027
006 034 NO STOREA OUTPUT
007 200
010 024 START LOAD A ZERO Get input
all 025
012 034 STORE A INPUT
013 377
014 000 HALT
015 024 LOAD A INPUT Input to A
016 377
017 043 JUMP (X) YES Jump instruction
020 004 being tested
021 024 LOAD A ONE 001 = II nO r..

022 026
023 344 JUMP UNC NO
024 006
025 000 ZERO 000
026 001 ONE 001
027 200 K200 200

We will changethe code in location 017 to try the different Jump

instructions. The original value is for a Jump If.A Not Zero instruction.

To usethe program, pushStart and when the computerstopsentera number

in the input. PushStart and the computerwill use your input numberwith

the Jump instruction. If it makesa jump, it will display eo 000 000

and halt. If it does not make the jump I it will display 00 000 ooe and

halt. You cantry different input numbersand seewhetherthe computer

makesthe jump or not.

EX 16-2

In the table on the next pageI fill in the right column by indicating

whetherthe jump was made or not 0 (Light 7 on the left is "Yes If and light

o on the right is rrNO'f. Just remember,yes and no, left to right.) For

eachbox in the right column usean exampleof input data as given in the

centercolumn. The mark If _Ir meansthat bit doesn1tmatter. Choose

anythingyou wish.

For eachdifferent kind of jump (there are 5) I changethe code in

location 017. The codesare given in the left columnof the table. If you

are not familiar with the notation, we give a definition here:

a=b

alb

a<b

a;ab

a>b

a equalsb

a is not equalto b

a is less than b

a is greaterthan or equalto b

a is greaterthan b

EX 16-3

Instruction
Input

Was Jump Made?(Data to be tested)

JUMP Ala xxx 00 000 000
043
xxx At leastone bit is a 1

JUMP A=O XXX At leastone bit is a 1
044
XXX 00 000 000

JUMP A<O XXX 0- --- ---
045
XXX 1- --- ---

JUMP A;;t 0 XXX 1- --- ---
046 00 000 000

XXX O(At leastone bit = 1)

JUMP A>O XXX 1- --- ---
047 00 000 000

XXX a(At least one bit = 1)

Our three new Jump instructionsare bas.edon the assumptionthat

the numberbeingtested,in the A register, usesthe negative number

conventionthat we learnedin the last Exercise. If we are thinking of the

numberas positive only, then we must be careful. For example,if we

had the address 341 in A we would think of it as positive. Our three

new Jump instructionswould treat this as a negativenumber.

Here is a problem for you to program. Given a number U (let this

be your input number), is it largerthan 70 but not greaterthan 100 (all

octal numbers)? Statedanotherway,

is U equalto 71,72,73,74,75,76,77,or lOa?

Or using the notationwe just learned,

is it true that 71 E; U E: 100 ?

EX 16-4

We give a flowchart below and a worksheeton the next page. Try

U equalto 0, 70, 71, 100, 101, and 270.

GET INPUT; Let INPUT = U

YES

YES

YES

EX 16-5

ADD A
004

SUB A
014

LOAD A
024

STOREA
034

JUMP AID
043

JUMP A=O
044

JUMP AcO
045

JUMP A ~ O

046

JUMP A"O
047

JUMP
344

HALT
000

Loc Data Symbolic Contents CommentsAddress

EX 16-6

Exercise17

In the last Exercisewe learnedthree new instructions. They did not

allow us to do anything that we couldn't do before, but they madeit easier

to do somethings. In this ·Exercisewe will learn more featuresabout the

computerthat make it easierto do someother things. HoweverI the new

featuresdonIt allow us to do anythingthat we couldnIt do already.

Be side s the A register, the computeralso has a B registerand

an X register. The B registeris location ODlandthe X registerhas address

002. Theseregistersare calledthe programmingregisters. A programmer

has full control of theseregisters0 There are instructionsto LoadI Store,

Add, and Subtract (from) the A, B andX registers. The five conditional

Jump instructionscan also be appliedto theseregisters.

The codesfor thesenew instructionsare obtainedby changingthe

most significant octal digit (of the first byte) from 0 to 1 for the B register

and from 0 to 2 for the X register. We summarizein the table below.

A B X

Address 000 001 002

ADD 004 XXX 104 XXX 204 XXX
SUB 014 XXX 114 XXX 214 XXX
LOAD 024 XXX 124 XXX 224 XXX
STORE 034 XXX 134 XXX 234 XXX

Below are the test conditionsfor the Jump instructions

~ o 043 XXX 143 XXX 243 XXX
=0 044 XXX 144 XXX 244 XXX
<0 045 XXX 145 XXX 245 XXX
~O 046 XXX 146 XXX 246 XXX
>0 047 XXX 147 XXX 247 XXX

As the table showsI the new codesare easily learned. You must only

rememberthe rule about substituting1 or 2 for the o.

If we use the instructionADD X INPUT I we do not changethe value

of the A or B registers. Only the X registeris involved. Likewise I when

we use a conditional Jump instruction, the test is madeon the specified

registeronly.

EX 17-1

Sincethe A, B andX registersare memory locations and do have

addresses,they can be usedin anotherway. We can use them as we

would use memory locationsto supply or to receiveour data. We can add

the contentsof the A registerto the contentsof the B registerand put the

answerin the B register. The symbolic form of this instructionwould be

ADD B A. Now go back and readthe last two paragraphsagainexcept

do not do what this sentencesays next time.

Below we give a few symbolic instructionsthat useA, B or X a s a

symbolic address. Give the octal code for eachand an algebraicor

shorthandstatementfor eachone to describewhat it does.

ADD A B

STORE X A

LOAD A X

ADD A A

SUB B B

What is the value of the extra registers? In severalof the problems

which we have programmed,we would load A with a variable from the

memoryI do somethingwith it I thenplace it back in the memory. Then we

would load A with anothervariable, do somethingelsewith it I and put

it back in the memory. With more programmingregisterswe can keepour

variablesin the registersandnot have to transferthem back and forth from

the memory. It will saveinstructionsand time.

The problemin Exercise14 is a good example. Our problemthere

was to add up 50 numbers. The programalternatesbetweenloading A with

the sum and loadingA with the addressthat was being changed. (You

shouldreview Exercise14.) Let I s look at a programwhich keepsthe

addressin the X registerand keepsthe sum in the A register. We give it

in symbolic form on the next page.

EX 17-2

Theinstructionslabeled1 initialize the first valuesof A andX.

The lnstruction labeled2 setsADDR, the first time to 204. Instruction

number3 increasesX by 1. We seeif this new addressgoesbeyondthe

last numberto be addedwith instruction 4. If it doesI the program jumps

out with the instructionin 5 to the END routine. OtherwiseI we add back

in/via instruction 6 I the amount we subtractedwith instruction4. With

instruction 7 we add the next numberin the list to the sum. Witll 8 we loop

back and repeatthesesteps. When we loop back, notice that X is increased

by onee

Loc Data Symbolic Contents Comments
Address

START LOAD A ZERO 1

LOAD X K204 1

LOOP STORE X ADDR 2

ADD X ONE 3

SUB X K266 4

JUMP X=O END 5

ADD X K266 6

ADD A (204) 7

ADDR Changes

JUMP LOOP 8

END STOREA OUTPUT

HALT

EX 17-3

There is one obvious simplification thoughit is a minor one. The

two instructions,3 and 4, can be replacedby one instruction.

ADD X ONE

SUB X K266

can be replacedby

SUB X K265

where K265, K266, and ONE containthe numbers265,266,and 001

respectively.

Here is a problem for you to program. In a list of unknown numbers

storedin locations 204 to 265, how many times does the number 252 occur?

It may be as few as 0 or as many as 50 (decimal). Use all three of the

programmingregisters. It is not difficult and has many similarities to the

problemwe discussedin this Exercise. A worksheetfor your answeris

on the next page.

EX 17-4

A
0--

B
1--

X
2--

ADD
-04

SUB
-14

LOAD
-24

STORE
-34

JUMP

to
-43

=0
-44

<0
-45

;!O
-46

>0
-47

Lee Data Symbolic Contents Comments
Address

EX 17-5

1000

Exercise 18

Externalto the computer, in our world, we use decimal numbers

ratherthan octal or binary numbers. How can we use decimalnumbersin

the computer? There is a binary numberequal to eachdecimal digit

0000 a
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9

A binary numberof four bits larger than 1001 would involve two decimal

digits so we wonlt use 1010, 1011, lIDO, 1101, 1110, or 1111. If we

have a decimal numberweill substitutethe equivalentbinary numberfor

eachdigit 0 For example, for 1984 we could write

0001 1001 1000 0100

This requires us to memorizethe ten codesbut we alreadyknow eight of

them from our binary to octal conversions.

For the time beingI let IS only talk about the decimal numbers00 to

99. We can store a numberin this rangein one byte. The four most

significant bits I the left half of the byte I would be the tens digit andthe

four least significant bits I the right half of the byte would be the units

digit. For exampleI

1000 0III would be 87 (decimal)

To distinguishbetweenthe different numbersystemswe will call this

representationbinary codeddecimal (BCD). In some ways thesenumbers

are like decimalsand in other ways they are like binary numbers.

r - ~ - - - - This group is the binary number8
6 0- This group is the binary number 7

0111

4\ li..-.. This group has the decimalplace va lue 1
L This group has the decimal place value 10

EX 18-1

Here are somebinary codeddecimalsfor you to translateto decimal:

0000 0011

0001 0000

0000 1000

0111 0111

0001 0010

1000 0100

0101 0110

0010 0011

0100 0001

0100 1001

Which of the following binary codeddecimalsare valid numbers?

0000 1100

0001 0000

1010 0000

1001 0111

Translatethesedecimal numbersto binary codeddecimal numbers0

50

05

23

78

46

37

28

19

The computerdoesits operationsin binary. If it were to add two

binary codeddecimal numbersI the answermay not be correct. Let I s look

at sucha case.

0010

+ 0100

0110

0011

1000

1011

= 23 in BCD

= 48 in BCD

which does not equal 71 in BCD. The decimalunits digit is not evena

valid code.

EX 18-2

There are two generalapproachesto this problem.

1. We can use BCD for the input and output but the computer

can convert theseto and from binary. InternallyI the

numberswill be .. straightII binary.

2. We can keepthe BCD representationinternally and use

specialprogrammingtechniques. If invalid BCD codes

are generatedI the programwill correct thesecodes.

At this time we will eli scuss the conversionof a two digit BCD numberto

binary. This is one-halfof the approachdescribedin 1. above.

Let I s look at the place value of eachbit in a two digit BCD number:

ABC D EFGH <J (To give namesto the bits)

I
, I 1 x 1 = 1

2 x 1 = 2

4x 1 = 4

8 x 1 = 8

1 x 10 = 10

2 x 10 = 20

4 x 10 = 40

8 x 10 = 80

This is the binary part1
This is the decimal part

For the right half byte I the place valuesare the sameas for a binary

number. To be valid thoughI thesefour bits cannotrepresenta number

larger than 9. For the left half byte I the samebinary place valuesapply

but the decimal place value is 10. Henceall of the place valuesof the

left hand byte are multiplied by ten.

Let I s look at some simpler BCD casesfirst.

This BCD number

0000 EFGH

is alreadyconvertedto binary (or octal) becausethe tens digit is zero.

Therefore

0000 EFGH (in BCD) is equalto 00 OOE FGH (in octal)

We have just regroupedthe bits I nothing more.
EX 18-3

Now take this BCD number

0001 EFGH

The 1 in the left ha11dbyte has a place value of ten. The numberten as

a binary numberis 1010. ThereforeI

0001 EFGH (in BCD) is equalto 0000 E FGH
+ 1010

(in binary)

what we have done is to take a 1 from the tens position and addedten to

the units position. Let I s look at a couple of examples.

0001 0100

- 0001

+ 1010

0000 1110

= 14 in BCD

Subtract1 in the 10 I s position

Add 10 in the l ' s position

This is the binary numberfor 14.

Here'sanotherexample

= 19 in BCD0001 1001

- 0001 Subtract1 in the 10 I s position

+ _- 1......0.......1__0 Add 10 in the 11s position

0001 0011 This is the binary numberfor 19.

Note that therewas a carry from bit position E to D

Let I S make a generalrule for any two digit BCD number, 00 to 99.

1) Subtract1 in the 10 I s position

2) Add 1010, in anothermemory location, each time

we do 1)

3) Stop when the BCD numberis 0000 EFGH

4) Add the number 0000 EFGH from 3) to the number

we were forming in 2) above.

EX 18-4

Weill apply this to an examplefor the BCD number32.

0011 0010 = BCD 32 00 000 000
I)

- 0001 + 00 001 010

0010 0010 = BCD 22 00 001 010 = Binary 10

----_-.-_-_---.--._-----~----------------

0010 0010 = BCD 22 00 001 010 = Binary 10
II)

- 0001 + 1 010

0001 0010 = BCD 12 00 010 100 = Binary 20

- - -- - - - - - - - - - - - - - - - -- - - - -- -- - - - - - - - - -

0001 0010 = BCD 12 00 010 100 = Binary 20
III) - 0001 + 1 010

0000 0010 = BCD 2 00 011 110 = Binary 30

0000 0010
IV) _ 0001-----

1111 0010

1111 0010

+ 0001

0000 0010

= BCD 2

Whoops.We shouldnot have subtractedagain.
We canfix it up by adding it back in.

= BCD 2 = Binary 2

Now we take what is left here and add it to our binary number

00

+ 00

00

011 110

000 010

100 000

Binary 30

Binary 2

Binary 32

In stepIV above, the Hover-subtractionllwas deliberate. Weill use

this methodto detectwhen we have reached0000 EFGH in the program

weill write shortly. If the answerafter subtractionis negative(the most

significant bit is a 1) I then we have subtracted 0001 0000 one time too

many and we shouldadd it backin.

EX 18-5

We needfirst to look at a specialcasewhich may arise. Suppose

we had the BCD number 95 or in generalany numberin the 90 IS. Look

at the result of subtracting 0001 0000:

1001 0101

- 0001

1000 0101

This answerlooks like a negativenumberand if we usedour rules above

we would have the wrong answer. Why doesthis problemcome up? It is

becausethe JumpA< 0 andthe JumpA;tO andthe JumpA>O instructionsare

basedon a signedrepresentationfor positive and negativenumbers. Our

input of a BCD numberis consideredto consistof only positive numberse

It is not difficult to overcomethis. Below we give a flowchart to

convert a two digit BCD numberI 00 to 99 I to binary.

YES

BCD: BCD - 1000 0000

BIN : BIN + a1 010 0a0

BCD: BCD - 0001 0000

YES

BCD: BCD + 0001 0000

BIN : BIN + BCD

BIN : BIN + aa aa1 a10

EX 18-6

ADD A
004

ADD B
104

SUB A
014

SUB B
114

LOAD A
024

LOAD B
124

JUMP

A<O
045

UNC
344

HALT
000

Loc Data
Symbolic

Contents Comments
Address

START LOAD B ZERO

rUMP A< 0 PIXUP

LOOP SUB A K020

rUMP Pte0 FINISH

ADD B K012

rUMP UNC LOOE

FIXUP SUB A K200

ADD B K120

rUMP UNC LOOP

FINISH ADD A K020

ADD B A

END HALT

P START

This programstarts with a BCD numberin A and finishes with the

equivalentbinary numberin B.

EX 18-7

Exercise19

Many times we have seeninstructionslike these

LOAD A ZERO

ADD B K020

Eachof theseusesthree bytes, two for the instructionand onerorthe data.

Insteadof having the secondbyte of the instructionas the addressof the

dataI we can let the secondbyte be the data. There would be two advantages

in doing this - it savesmemory spaceand running time.

This type of instruction, which does not useaddressingbut contains

the data itself I is called constantor immediate. Perhapsffimmediateff is

the betternamebecausethe data is not always constant. It may vary.

We can usethe Load I Store, Add, and Subtractinstructionsin the

immediatemode. In the Store instructionthe designatedregisteris stored

into the secondhalf of the instruction. In the Load, Add, or Subtract

instructionsthe secondbyte of the instructionis the data or the operand.

Symbolically we write theseinstructions

ADD A C=OOO

LOAD A C=020

or as

SUB X C=ADDR

STORE A C=

or evenas

LOAD A C=TABLE-1

The notation, C= , indicatesit is an immediatetype of instruction.

If a numericalquantity follows, then this is to be the value of the second

byte of the instruction. If a symbolic addressfollows, the numeric address

to which the symbolic addressis assignedis to be used. Arithmetic

combinationsof symbolic addressesand constantsare allowable. In the

Store instruction, no value is given for C since the value to be storedis

the value of the register. The notationI C= , is retainedto indicate the

type of instruction.

EX 19-1

The codesfor the immediateinstructionsare easily derived. The

right hand octal digit of the first byte becomesa 3. So far I we always

have had this digit as a 4.

Let I s look at someexamplesof immediateinstructionsin the computer.

Load this

Loc Data Symbolic ContentsAddress

003 004 P
004 023 LOAD A C = 000
005 000
006 003 ADD A C = 001
007 001
010 033 STOREA C =
011 000
012 000 HALT

Weill do single instructionsto study this program. The initial value of

P is 004 i) Do a single instruction (seeExercise9) .

The value of P is now-------------------
The value of A is now--------------------
From what byte in the memory did this last value come?---

Do anothersingle instruction.

The value of P is now-------------------
The value of A is now-----
How did we get this last value?--------------

Do anothersingle instruction.

The value of P is now------------------
The value of A is now--------_.._-------
The numberin location 011 is now-----------

Prior to this Exercisewe would have usedother bytes in the memory

to store 000 I 00I, and to savethe value of the A register.

How many bytes have we saved?-------------

EX 19-2

In the following programwhat is displayedin the output lights

when the computerhalts?----------------------

Loc Data
Symbolic ContentsAddress

HERE LOAD A C=HERE

ADD A C=OO6

STOREA OUTPUT

HALT

At the end of the last Exercisewe had a programto convert a BCD

numberto binary. That programcan useimmediateinstructionsto good

advantage. In the worksheeton the next page,write it using as many

immediateinstructionsa s you can.

EX 19-3

IMMED
--3

MEMORY
--4

ADD
-0-

SUB
-1-

LOAD
-2-

STORE
-3-

A
0--

B
I--
X
2--

10
-43

=0
-44

<0
-45

~ o

--46

>0
-47

Loc Data Symbolic Contents CommentsAddress

EX 19-4

Exercise20

We have learnedtwo forms for our Load, Store, Add, and Subtract

instructions. To the first type we will give the name II Memoryrr. To the

secondtype we gave the name IIImmediate". Letting a box like this

meanmemory location, we could representan immediate

type of instructionin this way.

CODE

Immediate

DATA

We could representa memory type of instructionin this way.

Memory

CODE

ADDRESS -0 DATAOF DATA

In a memory type of instruction, the secondbyte of the instructionis the

address of the location in the memory which containsthe data. It II pointsII

to the data.

Thesediagramssuggestother ways that we might specify the location

of the data. One other way, which we can use in the computerI is called

lIindirect ll and is shown below.

CODE

Indirect
INDIRECT
ADDRESS

ADDRESS
OF DATA DATA

The secondbyte of the instructioncontainsthe addressof the

locationwhich containsthe addressof the data. The addressin the

instructiondoes not point directly to the data. In an indirect way I it does.

Hencethis type of data addressingis named II IndirectII •

EX 20-1

To obtain the code for the indirect mode, the right octal digit of the

first byte is changedto a 5. Load, Store, Add I and Subtractcan use the

indirect address.

An exampleof the symbolic notation for this classof instructionis

LOAD A (TABLE)

The parenthesesaroundthe symbolic addresstell us that the indirect

addressmode is being used. The symbolic addressTABLE applies to the

location which contains the addressof the data. Let I s take an example.

Loc Data
Symbolic Contents
Address

100 035 STORE A (TALLY)
101 177
102 000 HALT

177 303 TALLY

301 000 TALLY 1
302 000 TALLY2
303 000 TALLY 3
304 TALLY4
305 TALLY5
306 TALLY 6

The instructionin location 100/101is a Store indirect. The second

byte of this instructionpoints to location 177. Location 177 in turn points

to location 303. The contentsof the A registerwill be storedinto

location 303.

Why would such a round aboutmethodhaveany value? Like the

other addressingmethodsI there are times when indirect addressingsaves

memory locationsor work.

WeIII now look at the" problem of finding the smallestnumberin a

list of numbers. If the list of numberswere 2 I 5 I 7 I 3 I 3 I 2 I 6 I 9 I 4 I

then the smallestnumberis 2. The fact that it occurstwice has no

significance.

EX 20-2

Our numberswill be octal in the range0 to 177. They will be stored

in a table or a list which startswith the symbolic address TABLE and ends

with the symbolic address LAST. Thus, if we had three entries, we might

have

TABLE 002
003

LAST 001

Of coursethe table may be much longer thanthis. Weill write the program,

symbolically at least, without knowing exactly how long the table is or

where it is locatedin memory. When we do know weill substitutethe

actualvaluesfor TABLE and LAST.

In our analysiswe will show how one personapproachedit including

severalof his omissionsand errors. We wish to exphasizethat very few

peoplecan write a perfectprogramfrom scratch. Our programmerfirst

wrote a very informal and generalflowchart.

L l > O ~ AT THE FI~S'T NUMBet. OJ THe L/ ST,.,
(nus IS iUE" SM~lL~T $0 I=,f R.)

+
CoM Pr\-Rf nte- SM4Ll.~Sf wlTH THE tJE'XT #=

V
S",.LlE"S'T NlJ MBcR ?

• No

K € ~ P THe t;LD
SIM~L.lf:S r •
~

eN1) c F THE L , ST ?
~ '1e$

ENJ>

]:>0 We ~~vi ~ JJEW

~ YE:S
USE T~f5 ~uM8~

~s T~e ~Mt\U.e-ST

~
1fe-AC~E'() Tt4 t

IJO

EX 20-3

Next our programmerdecidedhe could use two registersto good

advantage. He let

~ CONT",fJ TffE f r l > l > ~ ~ S > ~ r THt? tvuMeEte
,tv THt LIST lEltJt..; F:XAtA\)JE"j)

A \} Sf Fo({ COM P itA. \~ 0"'5

Startingto write the symbolic programhe put down

LOAD
Lo ~ . D

A D.o
SuB

:B
A
B

A

C=- T "~lE
(a)
c=- I
(B)

The first of theseinstructionssets the value of B for the first number

in the list. The A registeris loadedindirectly through the addressin B.

For exampleI if this were the case

Lac Data Symbolic ContentsAddress

204 002 TABLE FIRST NUMBER
205 003 SECOND NUMBER
206 001 LAST THIRD NUMBER

then B contains204 and A will contain 002 after the LOAD A instruction

above. So far this is the smallestnumber. Next the numberin B is

increasedby 1 and the next entry in the list is comparedto the smallest

numberby subtractingthe two. Right away our programmerrealizeshe has

destroyedthe copy of the smallestnumberI so he insertsan instruction

to saveit. Also if the result of the subtractionis larger than zeroI the

new numberfrom the list is smallerthan the previous smallestnumber.

EX 20-4

LDA))
I1€"Rc ~ _l€,.A!

AD]>
SV13
JUfV\P

C~TA!Le

(B) _~ -{ ST~q~ 4 c-
--... --... SMAt.LB FJ ...c= I 1

(l!>)
H-fR~

The programmerhas notedthat if A is greaterthan 0 and if the program

jumps to the instructionmarkedH"ERE I the the new smallestnumberwill

be picked up from the tableI storedor savedin SMALLEST, and the process

will continuewith a comparisonto the next numberin the list. On the

other hand, if the subtractionleaves A zero or negative, the new number

is not smaller. So the programmeraddsthe two instructionsbelow.

LoA]) B c= Tft.BL~

I+E~£ ~ _lE../t~ _ !.:- _ {~)_ --i sr~E A-c:::
TH&Re ItDj) "B C:. I Sl'JltJLftT

5vB A (8)
J/)II\f> A>0 HERe-
LDIH> A SM f\LLE'ST

JUMP THttE"

This providesthe main logic of the comparison. What is missing now is

the test to determineif the end of the table has beenreachedandthe ending

routine. The best place for testingwhetherthe end of the list has been

reachedseemsto be after the addition of one to the B register.

EX 20-5

LOA) B C= Tit 81£
f I £ ~ t <:- _LQJr! _1 _ {~) i S'7ot$' A c &::

T#rRE AJ) j) .B c=- , $}fAUFST
~ . . . - - - ---- -.. - -. - . ~ ~

S(J B A (&) ",
J/)MP A>o HERe- "
[DIU> A St'lALL£ST\

JIJMP THe~t ~
END As r-e1'J1rerL --'--

1$()B ~ C--:--LII-S-T+--~

JVP'lf '1=0 eN))

hJ)J> Be:. Llr5Tt I

Now our programmermight observethat the two successiveinstructions

could be replacedby the one

hPj)

SuB

ItD.D

B
B

B

c= I
c= lltST -/- I

C::: LItST

We could criticize our programmeron the choice of HERE and THERE

as symbolic addresses.It would be more meaningfulif HERE were replaced

by NEWSMALL and THERE by OLDSMALL.

You can completethe program, choosea table location and entries

for it I and test the program. In the end routineI havethe smallestnumber

displayedin the output lights. A worksheetis given on the next page.

EX 20-6

A
0--

B
I--
X

2--

ADD
-0-

SUB
-1-

LOAD
-2-

STORE
-3-

IMMED
--3

MEMORY
--4

INDIRECT
--5

JUMP

to
-43

=0
-44

<0
-45
;to
-46

>0
-47

Loc Data Symbolic Contents CommentsAddress

~

EX 20-7

Exercise21

The times when one shoulduse the immediateaddressingmode are

usually obvious. The memory addressingmode is the standardand usually

it is the one which is used" It takesexperienceto appreciatethe indirect

addressingmode. We will learn two other addressingmethodsin this

Exercise.

In indexedaddressingthe contentsof the secondbyte of the

instructionare addedto the contentsof the X register. The sum is the

addressof the data.

CODE

Index
FIRST
PART

X Reg SECOND
PART

DATA

If the secondbyte of the instructionis a 200 and the contentsof the X

registerare 004, thenthe data location is 204. The sameresult would

have occurredwith 004 in the instructionandwith 200 in the X register

or with 100 in the instructionand 104 in the X register.

The code for the indexedmode of addressingis obtainedby changing

the right handoctal digit of the instructionto a 6. The symbolic form of

an indexedinstructionis

ADD B TABLE I X

The index mode is very handy when one is working vv.i. th a list of numbers

or a table. Usually I the componentfrom the instructionitself will be one

of the end points of the table. It will be the first or last addressin the

table. The componentcontributed by the X registerwill be a relative

location within the table. For exampleI if we have

300
301
302
303

TABLE

LAST

1st entry
2nd entry
3rd entry
4th entry

EX 21-1

then

1. The secondbyte of the instructionmay be 300,

andX varies from 0 to 3, or

2. The secondbyte of the instructionmay be 277,

andX varies from 1 to 4, or

3. The secondbyte of the instructionmay be 303 I

andX varies from -3 to 0, or

4. The secondbyte of the instructionmay be 304,

andX varies from -4 to -1.

And thereare more possibilitiesthan these.

Let I S apply the index mode to the simple problem of Exercise 14

which was the addition of 50 small numbers. We had the 50 numbersin

locations 204 through 265 inclusive.

It could be done this way

LOOP

END
TABLE

LAST

LOAD X C=061 = 49 decimal
LOAD A C=O
ADD A TABLE,X
SUB X C=1
JUMP X ;:, 0 LOOP

FIRST NUMBER

50th NUMBER

Here we add the 50th numberfirst andthe first number last. The

reasonfor doing it this way is that we cantest the X registervery easily

when it goes from zero to a negativenumber. It would not be as easyto

test whenX went from 49 to 50.

You should comparethe numberof instructionsabovewith the number

we usedin Exercise14. The new addressingmodeshave allowed us to save

half of the numberof bytes we usedthen. Again we emphasizethat we can

accomplishnothing new or different. It is just an easierway.

EX 21-2

Weill mentionthe last addressingmethodwhich is called indirect-

indexed. It combinesthe featuresof the indirect mode, which occurs

first, and the featuresof the index mode which occurs second. The second

byte of the instructionis the address of anotherbyte. The contentsof

this secondbyte are addedto the X registerand the sum becomesthe data

location. Its symbolic form is

STORE A (LIST) IX

This instruction code is obtainedby making the right digit a 7. Our

diagramfor this mode is

CODE

INDIRECT
ADDRESS

Indirect- ~ ---I

Index

X Reg

FIRST
PART

SECOND
PART

DATA

The following fun type of problem"illustrates severalthings including

1. Index addressing

2 . Table look up

3. Delay

The problemis easythough it is harderto describe. Basically we will

createthe illusion of movementin the output lights from a seriesof non-

moving displays. Perhapsthe best illustration is a sign on which the news

moves across. Some scoreboardsoperatethis way and the basicprinciple

is the sameas movies or TV. We are limited with our few lights but still

we can have fun.

In a table in the memoryI we will store individual frames or "snap

shots". The programwill cycle amongthe bytes in the table. When it

comesto a new byte it will place it in the output lights. Unless we slowed

the computerdown it would run too fast. So weill add somedelay.

EX 21-3

Let1s supposethe table contains

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000
01000000
00100000
00010000
00001000
00000100
00000010

With the properchoice of delayI the display resulting from this table

will be that of a lighted dot which bouncesback and forth I left and right.

Everyonecan make up his own table andthey will vary in size. All of the

tablescan start at the samelocationI say 300. Each personwho makesup

a table must put the addressof the first byte after his last entry into the

A register.

The programis quite simple.

Loc Data Symbolic Contents Comments
Address

P START
A "Lasttl address

START LOAD X C=O 1

REPEAT LOAD B TABLE.X 2

STORE B OUTPUT 3

LOOP LOAD B C=040 4
DELAY TIME

SUB B C=OOI 5

JUMP B;tO LOOP 6

ADD X C=1 7

SUB X A 8

JUMP X=O REPEAT 9

ADD X A 10

JUMP REPEAT 11
300 TABLE Table startshere

EX 21-4

Let's examineit. Instruction number 1 setsX equalto o.
Instruction 2 loads B from the table. The value of X determinesthe byte

within the table. The numberwe have fllooked-upll goesto the output

lights. Instructions4, 5, and 6 createa delay. The techniqueis to load

a register (B in this case) with a numberandto count it down to zero.

This takestime which createsa delay. Changingthe numberin symbolic

location DELAY TIME changesthe delay. (You may want to experimentwith

the delay time) •

The instructionin 7 increasesthe value of X by one. Next we test

to seeif we have reachedthe last addresswhich we had decidedto put in

the A register. If X is equalto zeroI we jump back to REPEAT and start

the cycle again. If X is not equal to zeroI we add the amount subtracted

out for the test and then jump back to fetch the entry in the table.

A worksheeton the next pagecan be usedto completethe program.

If you try it with your own patternsI rememberthe best illusion of motion

occurswhen the differencebetweenrrframeslf is relatively small.

EX 21-5

A
0--

B
I--
X

2--

ADD
-0-

SUB
-1-

LOAD
-2-

STORE
-3-

IMMED
--3

MEMORY
--4

INDIRECT
--5

INDEX
--6

IND-IND
--7

JUMP

10
-43

=0
-44

<0
-45

~ o

-46

>0
-47

Lac Data Symbolic Contents Comments
Address

EX 21-6

Exercise22

We have completedthe addressingmodes. In this and the following

Exerciseswe will learn somene\v instructions. The three that we will

learn in this Exerciseapply only to the A register. They cannotbe used

with the B or X registers. They have the five addressingmodesand address

codesthat we learned.

Many times one byte will containmore than one item of data. We had

an exampleof this when we hadtwo BCD digits in one byte. How can we

separatethe individual items within a byte? For exampleI supposewe have

a byte with three items of dataI A I B I and C.

AA BBB BCC

which we wish to separateinto

AA 000 000

and 00 BBB BOO

and 00 000 OCC

One of our new instructionsI AND I permits us to do this.

The oppositeproblem occurswhen we want to merge data. We can

combine separateitems of data suchas A, B I and C aboveinto one byte.

In somecaseswe can usean Add instruction. We could in the example

just given. In other casesthe useof the Add instructionmany not work

becauseof carriesbetweenbit positions. Here is a casewhich would not

work. We have a byte of dataI

OX 000 000

in which we want to set the X bit to a 1. HoweverI we don1t know whether

X is now a a or a 1. If we usedthe Add instructionI we could get two

results.

If X = a
/

00 000 000
+ 01 000 000

01 000 000

If X = 1
/

01 000 000
+ 01 000 000

10 000 000

EX 22-1

We get the result we want in the first casebut not in the secondcase.

While there are ways one could do this I the secondof our new instructionsI

OR, allows us to do this easily.

In the AND instructionthe answerconsistsof 8 bits (one byte). Each

bit is determinedfrom the two bits in the data and in the A registerwhich

are in the sameposition. A bit in the answerI which is storedin the A

registerI is a 1 if and only if the two correspondingbits in the data and

in the original A registerwere both 11s. For exampleI

AND
00 110 011
01 010 101
00 010 001

Original A
Data
Answer (in A)

In the OR instructionthe answerconsistsof 8 bits also. Again each

bit is determinedby the two bits in the sameposition of the A registerand

the data. A bit in the answerI which is storedin the A registerI is a 1 if

either or both of the correspondingbits in the data and the A registerare 11s.

For exampleI with the sametwo operandsas aboveI

OR
00 110 011
01 010 101
01 110 III

Original A
Data
Answer (in A)

The codesfor the AND or OR instructionsare

AND

OR

32M

30M

xxx
XXX

where M is the addressingmode andXXX is the secondbyte of the

instruction.

The AND and OR instructionsperform logical operations. We don't

wish to imply that Add and Subtractare illogical operations;we speakof

them as arithmeticoperations.

Our third new instructionI LNEG I is an arithmeticoperation. It loads

the A registerwi th the negative va lue of the data. If the data is already

negative,thenA will be loadedwith a positive number. The instruction

LNEG A DATA

producesthe sameresult as

LOAD A ZERO

SUB A DATA EX 22-2

The code for LNEG (Load Negative) is

LNEG 33M XXX

where M is the addressing mode andXXX is the secondbyte of the instruction.

If one wantedto changeall the 0 bits ina byte to lis and all of the

1 bits in a byte to 0 lS, for example1

01 110 011

to 10 001 100

it could be done this way

LNEG A DATA

ADD A C=377

To show an exampleI let the DATA contentbe 01 110 011. Using the

LNEG instructionwe would get

this 10001101

and then adding 11 III III

we get 10 001 100

By now you know how to demonstratethe operationof individual

instructionswith the computer. It is recommendedthat you do so for each

of the instructions. When you try the LNEG instruction1 use the data

10 000 000. You will seethat an incorrect result is obtained. The reason

is that the number 10 000 000 represents-128. In the signedrepresentation

of numbersfor the computerI there is no +128.

If DATA contains 10 000 000 I andthe following operationis performed

LNEG A DATA

what result is obtainedin the A register?----------------

EX 22-3

Here is a problemfor you" There are six conditionsI U I V, W, X,

Y, and Z. Each condition is true or false as indicatedby the least significant

bit in eachof six locations. We'll give the locationsthe samenameas

the condition. We'll let a 1 bit indicatethe cO.ndition is true and a 0 bit

indicate it is false. For exampleI if U contains00 000 000 I then U is

false" If U contains00 000 00I, then U is true.

Programa solution to the following question:

Is it true that

or

or

1)

2)

3)

U and V andWare all true,

X and Yare both true I

Z is not true?

Here are sometest conditionsto try (we give the correct answeralso)

U V W X Y Z Question

Test 1 0 0 0 0 a 0 TRUE by 3) above
2 0 0 0 0 0 1 FALSE
3 1 1 0 1 a 1 FALSE
4 1 1 1 1 a 1 TRUE by 1) above
5 1 1 1 1 1 1 TRUE by 1) and 2) above

A worksheetis given on the next page.

EX 22-4

OR
30-

AND
32-

LNEG
33-

ADD
-0-

SUB
-1-

LOAD
-2-

STORE
-3-

A
0--

B
I--
X

2--

IMMED
--3

MEMORY
--4

INDIRECT
--5

INDEX
--6

IND-IND
--7

Lac Data Symbolic Contents CommentsAddress

EX 22-5

Exercise23

In the last Exercisewe learnedof ways to manipulatethe individual

bits in a byte. Through use of AND and OR instructionswe could set

individual bits to 0 or to 1. In this Exercisewe III learn of anotherway to

control and test individual bits. In some casesthe new way is preferable

while in other casesthe AND and OR instructionsare better.

The new instructionshave a different format and code structure.

They still have two bytes andthe secondbyte is an addressof a byte in

the memory. Only memory addressingis allowed.

The first instruction, Set 0 I setsa bit in the memory to a O. We may

give the locationandthe bit position within the byte. The code is

OB2 XXX

B is an octal digit which specifiesthe bit position. Bit positionsare

numbered7 I 6, 5 I 4, 3, 2, 1, 0 correspondingto the front panel labeling.

XXX is the addressof the location to be changed. For example,

072
200

setsthe most significant bit of the output location to a O.

A similar instruction, Set I, setsa bit in the memory to a 1. Its

code structureis

IB2 XXX

The instruction

102
200

setsthe least significant bit of the output location to a 1.

Since the A, B, andX registershaveaddresses,theseinstructions

can be usedto set bits in A, B I or X. However, a major advantageof the

Set 0 and Set 1 instructionsis that they can be usedto control bits outside

of A, B, or X without changingA, B, or X.

The Set aand Set 1 instructionsmanipulateor changedata. Two other

instructions,with some points of similarity, permit individual bits to be

tested.

EX 23-1

The Skip 0 instruction will causethe P registerto advancean extra

two locationsif the bit specifiedby the instructionis a O. A bit is specified

in the sameway as for a Set 0 or Set 1 instruction. The secondbyte of the

instructionis a memory address. The bit within this byte of data is

specifiedby the secondoctal digit of the first byte of the instruction. The

code for Skip 0 is

2B2 XXX

The code for the Skip 1 instructionis

3B3 XXX

The result producedby theseinstructionsis easierto rememberif you read

the nameof the nameof the instructionas

Skip on the specifiedbit equal to 0 (or 1)

If the specifiedbit is not equalto the condition given, then the next

instructionis the instructionfollowing this instruction. In this casethe

result is much like a two byte "do.....nothing" instruction. If the specified

bit is equalto the condition given I then the two byte instructionfollowing

this Skip (or the two one byte instructions)are omitted or not executed.

The P registerskips over thesetwo locations.

Let I S demonstratetheseoperationswith the computer. Load this

program:

Loc Data Symbolic ContentsAddress

000 001 A 001
003 004 P 004
200 000 OUTPUT 000
004 202 SKIP 0 bO A
005 000
006 172 SET 1 b7 (200)
007 200
010 000 HALT

First I from a study of the programpredict what the output

lights will be after you pushStart. ~ ~ ~ ~ ~ __~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _

PushStart. Were you correct?-----

EX 23-2

Now changeP backto 003. ChangeA to 000. Do not changeOUTPUT.

What do you predict the output lights will be after you push

Start?-----------------------------
PushStart. Were you correct? _

Set P equalto 003, A to 000, and OUTPUT to 000.

What do you predict the output lights will be after you push

Start?---
PushStart. Were you correct?

At the end of Exercise22 we gaveyou a problem to programusing

And, Or I and Lneg instructions. Solve the sameproblem using only the

SetI Skip, and Jump instructions. There is a worksheeton the next page.

EX 23-3

SET 0
OB2

SET 1
IB2

SKIP 0
2B2

SKIP 1
3B2

JUMP

UNC
344

10
-43

=0
-44

<0
-45

;:0
-46

>0
-47

Loc Data Symbolic Contents CommentsAddress

EX 23-4

Exercise24

We now cometo a group of relatedinstructionsfor which there may

not seemto be much need. After you have someprogrammingexperience,

youlll seemore value in them. Basically the instructionsmove data within

a byte and usuallytheydonltgenerateany new bits. And sometimesthey

throw bits away. Let I s describethe instructionsfirst andthen we III see

how to usethem. The four types of instructionsare

Shift Left

RotateLeft

Shift Right

RotateRight

Theseare one byte instructions. They operateonly on the A or B

registersas specifiedbut not on both at the sametime. The amountof

shifting or rotating may be specifiedas I, 2 I 3, or 4 bit positions. Weill

describ-eall of the operationsfor only one bit position. For three bit

positions, the result is the sameas doing it for one bit positionthree times

in a row.

A RotateLeft 1 instructionmovesall bits in the byte one placeto the

left. The bit that was at the left end (the most significant bit) is carried

back aroundto the right end to becomethe least significant bit. For example,

Bit position

Original bits
Final bits

7-6543210

abc d e f 9 h
bcdefgha

A RotateRight 1 instructionmovesthe bits one place to the right.

The bit that was at theright end(the least significant bit) is carriedaround

to the left endto becomethe most significant bit. An exampleis

Bit position

Original bits
Final bits

765432 1 0

abc d e f g h
h abc d e f g

The Shifts differ from the Rotatesin two ways. No bits are carried

aroundthe end. The most significant bit or the least significant bit is

treatedin a specialway. In a Shift Left I, theseare the results

Bit position

Original bits
Final bits

765432 1 0

abcdefgh
bcdefghO EX 24-1

If you were to add a byte of data to itself I you would get

abc d e f 9 h
+ abc d e f 9 h

b c d e f 9 h 0

which is the sameresult as a Shift Left 1. That the addition doesyield

the result claimedmay be shownby consideringthat multiplication by 2 in

binary is the sameas multiplication by ten in decimal. All the digits move

one position to the left and a zero is addedat the right. Thereforea Shift

Left 1 is equal to multiplication by 2. This is only true if the answeris

not larger than what can be representedin one byte. If we start with the

number5

00 000 101

after one Left Shift we have 00 001 010 = 10 decimal

after anotherLeft Shift 00 010 100 = 20 decimal

after another Left Shift 00 101 000 = 40 decimal

after anotherLeft Shift 01 010 000 = 80 decimal

after anotherLeft Shift 10 100 000 = 160 decimal
or = -96 decimal

If you are using a signedconventionfor your numbers8 overflow occurred

on the last shift. If you are using a positive only conventionI overflow

would occur on the next shift.

Similar resultsare producedwi th negative numbers. Let I stake-1

11 III III

After two Shift Left 1 instructionwe would have

11 III 100

which is equa1 to -4 (-1 x 2 x 2 = -4). If we continuedthis we would

eventuallyget overflow. The Shift Left 1 instructionis multiplication by 2

if no overflow occurs. When overflow occursthe result is greatly in error.

EX 24-2

The Shift Right instructionis equalto division by 2 with the remainder

being thrown away. The sign is treatedin a specialway. For exampleI

Bit position

Original bits
Final bits

Look also at a Shift Right 4

Original bits
Final bits

76543210

abc d e f 9 h
a abc d e f 9

abc d e f 9 h
a a a a abc d

It is done in this way to preservethe sign of the original number. For

exampleI a Shift Right 2 of -4

11 III 100

yields 11 III III

-4

-1

Give the resultsof the following ope.rationsappliedto the data.

RotateRight 1

RotateRight 3

RotateRight 4

10 III 000

01 all 100

10 III 000

a

b-----------

Answersa and b shouldbe the same. Do you seewhy?

RotateLeft 1

Rotate Left 4

01 011 100

10 III 000 ________ c

Answersbandc shouldbe the same. Canyou make up a rule here?

Shift Left 1 11 000 110

Shift Left 4 11 000 110 d

Shift Right 4 11 000 110 e

Answers d ande shouldnot be the same.

EX 24-3

For signedrepresentationof positive and negativenumbersI does

overflow occur in thesecases?

Shift Left 1

Shift Left 2

Shift Left 1

Shift Left 2

00 101 101

00 101 101

11 010 010

11 010 010

If you do a Shift Right 4 followed by a Shift Right 4 what are

the passible outcomes? _

The codesfor theseinstructions,when appliedto the A registerare

Right Shift aNI WhereN
Right Rotate INI 1 1 place

Left Shift 2Nl 2 2 places
3 3 places

Left Rotate 3Nl a 4 places

For the B registeradd 4 to the value of N. Theseinstru·ctionshave only

one byte.

You shouldtry theseinstructionsin the computer0 You Can check

your answersaboveand try other data valuesalso.

The Rotateinstructionsare useful for moving bits around. Perhaps

you might want to test whetherbit 6 in the A registeris a aor a 1. You

could do this in severalways,oneof which is to perform a RotateLeft 1

followed by a conditionalJump instruction.

The Shift instructionsare arithmeticoperations. They are a fast way

to multiply or divide by 2,4,8,or 16.

EX 24-4

Exercise25

We often have the samesequenceof instructionsrepeatedat different

placesin a program. The repeatedsequencemight perform a function

suchas conversionof a BCD numberto binary or getting an input number.

A flow chart for a situationof this

type might look like Figure 25. 1 CI

At three different placesin the programI

we might usethe sameinstructions

LOAD A C = 0

STORE A INPUT

HALT

In this Exerciseweill show a

way to make one set of instructions

servefor all three places" The

generalidea goesby the name

trsubroutine".

Subroutinesare different from

looping. It is true that a program FIGURE 25. 1

which loops does use the sameset of instructionsmore than once but

theseoccur at only one place in the program. Subroutineswould apply to

the samesequenceof instructionsvvhich are usedat different placesin

a program. A programloop may have a subroutineand a subroutinemay

have a loop.

Load theseinstructionsin the computerand push Start.

003 004 P
004 200 NO-OP
005 024 LOAD A P
006 003
007 000 HALT

When the computerhaltsI what doesA contain? _

EX 25-1

The NO-OP instructionmay be ignored. The LOAD instructionputs

the value of the P registerinto the A register. At the momentthat the

transferis actually made, the P registerhas the value which is the

address of the LOAD A P instruction.

Let1s extendthe programin the computerand divide it into three

parts

003 004 P
004 200 NO-OP
005 024 LOAD A P
006 003
007 344 JUMP 300
010 300
011 200 NO-OP
012 000 HALT

100 024 LOAD A P
101 003
102 344 JUMP 300
103 300
104 200 NO-OP
105 000 HALT

300 034 STOREA OUTPUT
301 200
302 000 HALT

Part 1

Part 2

Part 3

First I set P equalto 004. PushStart8

After halting, what does A contain?-----------
Next I set P equalto 100. PushStart.

Now what does A contain?--_._----------
If the programcomesto part 3 from part I, A contains005. If the

programcomesto part 3 from part 2, A contains100. Now supposewe

wantedto go back, from part 3, to the part we camefrom. If we made

EX 25-2

part 3 into the following

300 034 STORE A OUTPUT
301 200
302 000 HALT
303 003 ADD A C=4
304 004
305 034 STOREA IP ADDR
306 310
307 344 JUMP XXX
310 --- JP ADDR

we will return to the part from which we cameto part 3.

This illustrates the subroutine concept. Part 3 is the subroutine

(not a very useful one in this case). Part 1 and part 2 are two different

sectionsof the programwhich can both use part 3, the subroutine. Load

the completepart 3 I do single instructionsandobservethe contentsof

the registerswhen you start with valuesof P equalto 004 and 100.

There are other ways that we achievethe samething. The common

featureis to createa record (an address)which indicatesto the subroutine

what other part of the programis usingthe subroutine. This record "marksII

where we are to return after the subroutineis completed. In our example

above, this recordwas maintainedin the A register.

A. new instruction, Jump and Mark, makesthis processmuch easier.

The Jump and Mark set of instructionshas all of the characteristicsof the

Jump instructionswhich we have learned. It may be conditionalbased

on one of five conditionsfor A, B, or X or the Jump and Mark may be

uncon.ditional.

If the Jump is madeI with the Jump and Mark instruction, the address

of the Jump and Mark instructionplus two is storedin the location whose

addressis in the secondbyte of the instruction. The next instructionis

takenfrom the location following this Mark record. Letls look at an

EX 25-3

exampleto help straightenout the confusion. Load this.

003

100
101

300
301

100

364
300

000

p

rUMP & MARK 3001

HALT

The Jump and Mark aboveis unconditional.

PushStart.

P has the value , . _

The contentsof 300 are ~ ~ __~ . ~ . ~ __~ __~

The Mark addressis storedin location 300. In this casethe Mark address

is 102 which is two more than the addressof the (first) byte of the Jump

and Mark instruction. When the subroutine(not shownhere) is completedI

it would probably "return control" to the instructionin location 102.

The Jump Indirect instructionis an easyway to returncontrol from

the subroutineto the programsegmentwhich usedthe subroutine. The

word Irindirect II has exactly the samemeanirlg as it does for indirect

addressing. The secondbyte of a Jump Indirect instructioncontainsthe

addressof the location which containsthe addressof the next instruction

to be executed. Let IS expand our previous demonstrationprogramto

include an unconditionalJump Indirect instruction.

003

100
101
102

100

364
300
000

P

JUMP & MARK 300

HALT

300 000
301 000 HALT
302 354 JUMP INDIRECT (300)
303 300

EX 25-4

Do single instructionsand recordthe valuesof P

1. P is 100

2. P is ------------------------
3. P is -------------------------
4. P is ----------------
Lo.cation 300 contains------------------

Initially (300) are 000. After the Jump and Mark instruction, location 300

contains 102. When the Jump Indirect instructionis executed,the

computerusesthe 300 I from the secondbyte, to find the addressin 300

of the next instruction.

In our little exampleI the subroutineis so simple as to be ridiculous.

In general, subroutineswill be more complexthan shownhere.

There is also a Jump and Mark Indirect instruction. The indirect

featureoccursfirst followed by the Mark feature. You can study this

instructionby yourself.

continued . . •

EX 25-5

The names,codesI symbolic representationsI and the conditions

for all of the Jump instructionsare summarizedbelow.

NAME

JUMP
or JUMP DIRECT

JUMP INDIRECT

JUMP & MARK DIRECT

JUMP & MARK INDIRECT

CODE

U 4 V

U 5 V

U 6 V

U 7 V

xxx
XXX

XXX

XXX

SYMBOLIC

JUMP
or JPD W

JPI W

JMD W

JMI W

XXX

(XXX)

XXX

(XXX)

Q....
o A register
1 B register
2 X register
3 Unconditional

V

3 I 0
4 = 0
5 <: 0
6 ~ 0
7 ::> 0

Must be one
of these

values

W

(A, B, or X) combinedwith ('I 0, = 0, <: 0, ~ 0, >0)

or UNC

PreviouslyI we have usedthe name JUMP II With more types of

Jump instructionsI we needto refine our description0 By including II Direct II

and IIIndirect II in the namewe indicate the addressingmode{O The name

II Mark II tells when this feature is present. In the symbolic form we

abbreviatetheseas D I I I and M. With no Mark featureI we use the letter P.

EX 25-6

Exercise26

We'll continueour work with subroutinesand we'll commentabout

computersand programming. As we have beenlearning new featuresand

new instructionsI we have kept repeatingthat we couldn't do anything

that we couldnIt do with our first set of instructions. The new addressing

modesand the new instructionsmade somethings easierto do.

* * *
A computermust only be able to do only a few simple kinds of

operations.

More complexoperationsmay be built up from combinationsof

simpler operations.

The speedand accuracyof a computermake it reasonableto have

very complicatedcombinationsof elementaryoperations.

As programmers,our taskis to find combinationsof operationsfor

solving our problems. This task is not always easy.

* * *
The Add instructionis not a necessity. We could omit it. Weill

explain how by developinga subroutinefor additions.

The addition of a + b can be performedin this way:

a + b = a - (-b)

If we havea Subtractinstruction, we don't needan Add instruction. It is

easierif we do havean Add instruction, but for the time being let I s assume

that we don't .

When we needto add a number (in NUM) to a numberalreadyin A,

we can usetheseinstructions

TEMPORARY 1

TEMPORARY 2

STORE A

LOAD A
SUB A

STORE A

LOAD A
SUB A

c=
c = 0

NUM

C=

TEMPORARY 1

TEMPORARY 2

EX 26-1

Since additionis a commonrequirementwe might chooseto make

this into a subroutine

STORE A c=
LOAD A C=O
SUB A NUM

STORE A c=
LOAD A TEMPORARY 1

SUB A TEMPORARY 2

IP! UNC ADD

TEMPORARY 2

ADD

TEMPORARY 1

If the main part of the programrequiresaddition we will jump to the

ADD subroutinewhic·h will do the addition. When this is doneI the

subroutinewill return us to where we camefrom the main program.

HoweverI we have one remainingproblem0 Each part of the main

programthat usesthe subroutinewill generallyneedto add a different

number. As we have written the subroutinewe always usethe number

in NUM o

When the main part of the programusesthe subroutineI it ·could

do this

LOAD

STORE

JMD

B DESIRED NUMBER

B NUM

UNC ADD

Before using the subroutineI the main part of the programplacesthe

numberto be addedto A in NUM. Then our subroutineabovewould work.

Another way is as follows. The B registerwill containthe number

to be added. Then the main part of the program rI callsII the subroutineby

this sequence

LOAD

JMD

B DESIRED NUMBER

UNC ADD

but we have to changethis instructionin the subroutine

to

SUB

SUB

A

A

NUM

B

EX 26-2

Another way is as follows. The B registerwill containthe address

of the numberto be added. Then the subroutineis called by this sequence

LOAD

JMD

and in the original subroutine

B

UNC

C = Address of desirednumber

ADD

is replacedby

SUB

SUB

A

A

NUM

(B)

We are trying to illustrate that a set of conventionsusually applies

to a subroutine. We must be surethat we understandthese. What do

we have to do to call the subroutine? Where will be the answerwhen we

returnfrom the subroutine? Are thereany restrictions? What registers

doesit use?

Just becausewe want to divide two numbersand there is a subroutine

called DIVID'E, it doesnIt meanwe can use this subroutine. Perhapsthe

subroutineassumesthe answerwill be lessthan one andwe have an

answergreaterthan one.

Here is a two part problemfor you. First, write a subroutineto

multiply two small numberstogether(I (We say "smallil so the answerwonIt

exceedthe capacityof one byte.) If U and V are the two small numbers,

the multiplication can be performedby addingV togetherU times.

For the secondpart of the problemwrite a programwhich will find

the volume of a box whosesidesare J, K, and L. Use your subroutine

to find J x K and then multiply this result by L. Find thevolume of this

box: 4 x 5 x 6.

There is a worksheeton the next page.

EX 26-3

~

RTC

R=O, A

R=l, B

R=2, X

R=3, UNC

T=4, JPD

T=5 I JPI

T=6, JMD

T=7 I JMI

C=3, 10
C=4, =0

C=5,<0

C=6, ~ O

C=71>0

Other

RKA

K=O I Add

K=l, Sub

K=2 I Load

K=3 I Store

A=3, Immed

A=4, Mem

A=5 , Indirect

A=6, Index

A=7 I Ind/lnd

Loc Data
Symbolic Contents Comments
Address

See next pagealso.

EX 26-4

Loc Data
Symbolic Contents CommentsAddress

EX 26-5

Exercise27

Ever}l time that we add or subtractto the A, B I or X registerI the

computerdeterminesand storesa carry bit and an overflow bit. If we were

nit-pickersI V\Te would note that the carry bit shouldbe called a borrow bit

for subtractions. We're not I so we use the name II carryII for both addition

and subtractionII

First I let I s say where thesebits are storedand then we \Alill say

what they are. For the A registerI the carry and overflow are storedin

location 20I, for B in 202 I and for Xin 203. The overflow bit is the

least significant bit (bO). (Note: Canyou rememberQverflowandbO?)

The carry bit is in the adjacentposition, bl.

Wheneveran Add or Subtractinstructionis usedwith the A registerI

the carry and overflow bits in locatiorl 201 are updated. This is the only

time th.esebits are changedexceptfor things like Store B (201). The bits

in location 202 are updatedwhen the addition or subtractionis madeto

B registerI in location 203 for addition and subtractionto the X register.

The other six bits in theselocationsare always set to o.

The carry bit is the easiestto explain. If you add two eight bit

numbersI the carry out of the left most position (b7) is the carry bit which

we have definedabove. In theseexamplesI you are to tell what the

carry bit will be.

10 001 100
+ 01 101 110

10 001 100
- 10 001 100

10 001 100
+ 11 101 110

10 001 011
- 10 001 100

Are you able to checkyour answerin the computer?----
V\!hat good is the carry bit? Here are a coupleof uses. For numbers

which are consideredto be positiveI with a rangefrom 000 to 377 octal, the

carry indicatesthat overflow has occurred. \Ve have addedtwo numbers

whose sum is larger than 377 or we have subtracte,done numberfrom a

smallernumber.

EX27-1

The seconduse for the carry is in multiple precisionaddition and

subtraction. A double precisionnumber (for us) is 16 bits long and is

storedin two locations. If we add two double precisionnumbers,for

example
Possiblecarry (in this example,the carry is a 1)

~

10 011 101 11 110 100
+ 01 000 100 01 101 001

there may be a carry from the least significant half of the addition into

the most significant half. This would be the carry that we detect (or the

borrow in subtraction).

The overflow bit pertainsto a signedrepresentationof numbers.

If our conventionis that the numberrangeis -128 to +127 decimal (or

-200 to +177 octal), then the overflow bit is a 1 if the correct answerto

the addition or subtractionis outsidethis range. Otherwisethe overflow

bit will be aD.

Tell whetherthe casesbelow generateoverflow or not. The numbers

are octal and you may have to convert them to binary to do the arithmetic.

+ 120
(+) +-&

- 112
(+) --B.-

+ 43
(-) - 162

Does overflow occur?------

Does overflow occur?------

Double checkyour answerby using the computerand a couple of

instructions.

Here is a problem for you to program. Write a subroutinefor double

precisionaddition. The first numberwill be in B (most significant half)

and in A (the least significant half). The numberto be addedwill be

storedin two consecutivelocationsin the memory. The least significant

half will be the location which has the smalleraddress. This address

will be in the X register.

EX 27-2

One personcameup with this solution which has an error in it.

Canyou find and correct his error?

ADD DP
ADD A (X)

ADD X C = 1

ADD B (X)

SKIP 0 bl (201)

SUB B C = 1

JPI UNC ADD DP

His error was _

which shouldbe _

CorrectI completeI and test the subroutinewith the computer. A

worksheetis given below.

Loc Data Symbolic Contents Comments
Address

EX 27-3

Exercise28

In this ExerciseweIII solve a problem.involving sorting. Along the

way weill take sometime to talk about generalproblems.

OUf problem startswith theseconditions.

1. We have a table of numbers,with at least two numbersI

storedin the memory. The table beginswith symbolic

addressTABLE andendswith LAST.

2. A numberin the table is positiveI from 0 to 100 (decimal) I

ThesenumbersI in octal, are storedone per location.

3 . There may be repeatednumbers,i. e ., 37 may appear

threetimes. Some numbersmay not be present.

4. The original order of the numbersmay be described

as random.

We are to write a programto re-arrangethesenumberswithin the table so

that they will be in ascendingorder or at leasta non-descendingorder.

In short, we are to put the numbersin order. For exampleI thesenumbers

are not sorted: I, 5 I 6 I 3, 2 I 0 I 7, 1. When sortedthe sequence

becomes0, I, I, 2, 3, 5, 6, 7.

* * *
Many peoplehave a difficult time at this point. We speaknow

about the generalcaseof problem solving andnot just about this particular

problem. First I they may not understandthe problem. Second,they may

not know how to proceedtoward finding a solution. The following ideas

are sometimeshelpful.

Usually it is a good idea to forget that a computeris involved. Can

we re-statethe problemin more familiar terms? Can we find a nmanualH

solutionthat we could do ourselves ? Answersto thesequestionsmay

give us someinsights and clues.

In our particularproblem, it is the sameas the problem of sorting

cardswhich have the numberwritten on them. When given to us, the

cardsare all scrambledup. We have to sort them in order.

EX 28-1

Still forgetting that we have a computerI we can ask ourselveshow

we would solve the problem manually. Think of an many ways as you can

and seewhat the advantagesand disadvantagesare. Then try to translate

a selectedmethodinto computerterms. How would the computerdo it?

At this point you shouldtry this processyourself before readingon.

* * *
Using the cardsas our model, theseways suggestthemselves

(you may havethought of more):

1. Look throughthe cards for all of them with the numbero. Put

theseat the front. Next look for all of the cardswith the number 1. Put

thesebehindthe 0 cards. Continuein this way until all of the numbers

have beenexamined.

2. Sort the cards into ten piles by their unit I s digit. Pick up the

pile of cardsending in 9 I then pick up the cards ending in 8 and put them

behindthe 9 IS. Continuethis patternuntil the cards ending in 0 are at

the back. Next go throughthe deck from the front and sort them again

into 10 piles but use the tenQs digit this time. Thus ten new piles are

formed,oneof eachtenI s digit. Pick up the pile for 00 to 09 I next put

the pile for 10 to 19 behind theseI and so on. The cardswill be sorted

when you have done this. (If you donlt believe it I try it) . *

3. Imagine the cardsare spreadin your hand like playing cards.

Comparetwo adjacentcardsand put the larger one on the right and the

smallerone on the left. A pair may alreadybe in order. If they arenltI

e xchangeth e position of the pair of cards. Keep comparingand

interchangingcards until no more exchangesare possible. The cardsare

then sorted.

The first and third methodsare simple but may involve a lot of card

moving or comparisons. The secondmethodhas the least amountof card

handling. At the mostI in this methodI you III look at a card twice. The

secondmethodis more complicatedto perform within the computer. WeIII

use the third methodsince it seemsto be the simplestto do.

* A slight extensionof this methodis requiredin our problem because
there are three digit numbers.

EX 28-2

Usually a good approachfor writing a programis to identify the

heart of it and to work with that fora while. This tendsto clear up ideas.

Then it will be obvious usually how the beginningand the end should

relate to this.

Letls put into words what we might do. Weill comparethe first and

the secondnumber. If necessaryI weill interchangetheir positionsin the

table so that the first of the pair is not largerthan the secondnumber.

Next weill comparethe secondandthe third numberI and interchange

them if necessary.We continuein this way until we have comparedthe

next-ta-lastand the last number. This is one pass. Weill repeatmaking

passesuntil we have a passwithout any interchange. Then we are done.

YES

INTERCHANGE
NUMBERS

YES

GO TO
NEXT PAIR

START WITH
FIRST PAIR

COMPARE THE
TWO NUMBERS

FIGURE 28.1

NO

Many times this is a

good point at which to

commit tentativeideasto

a flowchart. In Figure 28.1

we give a flowchart in

very broadstatements

which is incomplete. We

must have a methodto

detectwhetheran inter-

changewas madeduring

the last pass.

There is a technique

of using "flag" bits that

we can use. Actually we

needonly one bit. Weill

resetthis bit (make

equalto 0) before we start

a pass. If we do inter-

changea pair of numbersI

weill set this bit to a 1.

EX 28-3

At the end of a passwe can look at whetherthis bit is 0 or 1 to seeif

we are done or if w-e needto make anotherpass.

SET FLAGGO TO
NEXT PAIR

START WITH
FIRST PAIR

A flowchart breaks

a larger probleminto

smallercomponentsand

relatestheseparts to

eachother. With

experienceI peoplecan FIGURE 28.2

understandlarger concepts.

Eventually their flowcharts may only say SORT when a sort is intended.

Let I s assumethat you understandthe componentparts in Figure 28.2 and

proceedfrom there.

We have revisedand

completedthe original

flowchart to include this I

Figure 28.2.

When a flowchart has

enoughdetail that it is

obvious how to complete

the solutionI then no more

should be added. Too

much detail clutters it up.

Sometimessecondaryor

auxiliary flowcharts are

better. What constitutes

enoughdetail dependsupon

who usesit. If someone

besidesthe authoris using

it, it seldomis as clear

as it was to the author.

A $ you write a programit is a good habit to add commentswith the

instructions. Thesemay tie the instructionsin with the flowchart I or explain

very generallywhat is being doneI or explain a IItricky" point. On the next

pagewe give the symbolic instructionsfor our sort program. From the flow-

chart and the commentsyou shouldbe able to interpret the individual

instructions. EX 28-4

A:O--

B:l--

X:2--

ADD:-O-

SUB:-1-

LOAD:-2-

STORE:-3-

Immed:--3

Mem:--4

Index:--6

JPD:-4-

A<:O:--5

UNC:3-4

=0:--4

SETO:0-2

SETl:1-2

SKIPO:2-2

Loc Data Symbolic
Contents CommentsAddress

p START

FlAG ---
START LOAD X C=O For first number

RESET FLAG SET 0 b7 FLAG

NEXT PAIR LOAD A TABLE.X First number

ADD X C=l To get second
number

SUB A TABLE.X Subtractsecond
number

TPD A<O OK Jump if order
is OK

TPD A=O OK

LOAD A TABLE,X

SUB X C=l

LOAD B TABLE X To inter-
changethe

STOREA TABLE X two numbers

ADD X C=l

STORE B TABLE X
Rememberthat

SET 1 b7 FLAG interchange
was made

OK SUB X C=LAST-TABLE Test for end of
pass

JPD X=O END PASS Jump if end of
pass

ADD X C=LAST-TABLE Correction

JPD UNC NEXT PAIR Do next pair
Test for inter-

END PASS SKP 0 b7 FLAG changesI skip tc
ENDJOB if none

JPD UNC RESET FLAG Do anotherpas s

END TOB HALT Done
TABLE Data to be

sortedLAST

EX 28-5

WeIve carriedthe analysisfar enough as a joint effort.

There is a bad point aboutthe program. We can1t completethe

programuntil we know what addressthat LAST will be. We would like it

to be more general. One techniqueis to store a numberin the table (at the

end) which is not valid as data. In our casethis might be a numberin

the range 200 to 377. If we read a numberof thesecharacteristicsI we

would know that we are at the end of the table.

Here is a set of data to be sortedby the three methodsthat we

discussedearlier

1456720379

0000321071

5620000324

2134728347

Would method 1 be a good methodto sort thesefour numbers?__

Why? . _

Would method2 (when extendedfor the larger n u m b e ~ be a good

method?---
Do you think the characteristicsof the data to be sortedwould

affect the efficiency of the m e t h o d ? ~ ~ __~ _ ~ _ ~ ~ ~ _ ~

EX 28-6

Exercise29

There'sa four letter expression,GIGO I which standsfor

tlGarbageIn, GarbageOutll
• The inventor of the phrasemeantto convey

the idea that the output of a computerwas no betterthan the data input.

Actually I this neednot always be the case. One of the functions of a

programshouldbe to test the validity of the input data. If the input data

is badI the computershouldnot use it.

In this ExerciseI we will use a programwhich testsinput dataI

has a subroutineI and has a new exampleof BCD to binary conversion.

Our problem is to determinewhethera dateI which is our input I is valid

or not. The input will be in three parts in this sequence:

2 BCD digits for the month

2 BCD digits for the day of the month

2 BCD digits {the last two} for the year.

Only 1 to 12 will be a valid month. The numberof days per month

dependson the month and whetherit is a leapyear or not. The year can

be any two BCD digits.

Which yearsare leapyears? Theseare the rules:

A. If the year is divisible by 400 (decimal) evenly

(with no remainder)I it is a leapyear.

B. Years divisible by 100 evenly but not by 400

are not leapyears.

C. Years divisible by 4 evenly but not by 100

are leapyears.

Our programwill checkdatesfrom 1601 to 1999. The dates1600

and 2000 are leapyears. The years 1700I 1800I and 1900 were not leap

years. Our programwill considera year input of 00 not to be a leapyear.

During leap yearsI Februaryhas 29 days. Otherwiseit has 28 days.

We give the completeprogramincluding a set of comments. Weill

discusssomeof the featuresof it starting now with the INPUT subroutine.

This subroutineis usedto get the month, dayI and year inputs and to

EX 29-1

convert the entry to binary. The output display is usedto indicate which

of thesethree should be enterednext. Theseoutput codesare

Month
Day
Year

00 100 000
00 010 000
00 001 000

The part of the main programwhich usesthe subroutine will load the

A registerwith the properoutput code. The INPUT subroutinestoresA in

the output location 200. Coming into the subroutineI the B registermay

containinformation which should be saved.

The BCD to binary conversionstartswith LOOP within the INPUT

subroutine. We follow a proceduresimilar to the one usedearlier in

Exercise 18 exceptthat we detecttoo many subtractionsfrom B by the

carry (or borrow) which is storedin location 202. The correctionfor the

A registeris a combinationof two things:

1 e We have addeda12 one too many times and this

should be subtractedout.

2 • In adding the units digit in B I we will be adding

1111UUUU since we oversubtractedon B. The

correctionfor this is to add 020.

The combinedcorrectionfrom 1) and 2) is to add 006.

If the numberI after conversionI has b7 as a I, this would

representa numberlargerthan +127 decimal. Since this would not be a

valid monthI day I or year in our conventionI this would be a bad input.

In this casewe jump to the programfor bad input and we do not make a

normal return from the subroutine. If the input passesthis first testI we

restorethe B registerto its initial value and make a normal return from the

subroutine.

Looking nowat the main part of the programI it commencesat START

where the A registeris loadedwith the code that indicatesa month should

be entered. We then use the subroutineto get the input and convert it to

binary. On the return from this subroutinethe convertedvalue is in the

A register. If this numberis zero, it is a bad input and it is rejected.

If the month is larger than 12 decimal, it is also rejected.

EX 29-2

START LOAD A C = 040 Code for month

MONTH JPM UNC INPUT Get BCD input and
convert to bi nary

JPD A==O BAD No zero month

STORE A X Keep month in X

SUB X C = 015 (=13 decimal)

JPD X ~ O BAD Month larger than 12

ADD X C = 015 Restore

DAY LOAD A C = 020 Code for day

JPM UNC INPUT Get BCD input and
convert to binary

JPD A=O BAD No zero day

STORE A B Keep day in B

YEAR LOAD A C = 010 Code for year

JPM UNC INPUT GetBCD input and
convert to binary

JPD A=O NOT LP YR

SUB A C = 143 (=99 decimal)

JPD A>O BAD Largerthan 99

ADD A C = 143 Restore

AND A C = 003 Leapyear test

JPD Ala NOT LP YR

LP YR SETl bO FEB Februaryhas 29 days
in leapyears

NOT LP YR SUB B JAN-l,X Test for numberof days
per month

JPD B>O BAD Too many days for the
month

LOAD A C = 240 Codes .f 0 r ugood" and
II monthII

JPD UNC OUT

BAD LOAD A C = 041 Codesfor IIbadll and
II monthII

OUT SETO bO FEB RestoreFeb to 28 days

JPD UNC MONTH Start over

EX 29-3

JAN
FEB

037
034
037
036
037
036
037
037
036
037
036
037

= 31 decimal
= 28 decimal

= 30 decimal

EX 29-4

To get the day input I we load A with the code for day and use

the subroutineagain. Again when we return, a zero value is not valid. The

day is savedin the B register.

For the year input, we load A with the year code and jump to the

INPUT subroutine. On returningI a zero value is valid and it is not a

leapyear (1900). Next we test for valuesgreaterthan 99 decimaland

take the exit to BAD if the year doesexceed99. If it is valid, we restore

the original value and extractthe two leastsignificant bits• Since we

are in the binary systemI thesetwo bits would be the remainderafter

division by 4. If they have the value I, 2, or 3 I it is not a leapyear.

For the leapyearswe set the least significant. bit of the number

of days in Februaryto 1. There is a table of 12 entries,one for each

month, which is the maximum numbersof days for that month. Twenty-eight

in octal is 034 and twenty-nineis 035 in octal.

To test whetherwe have more days than the month allows I we

subtractthe table entry from the numberof days in B. The subtractionuses

indexedaddressingwhereX containsthe month. An arlswergreaterthan

zero is bad. For a good answer,we load A with 240 which is a combination

of the codesfor IIgood" and "monthll
•

Good

Month

The programthen goes to OUT.

10 000 000

00 100 000

For a bad input we load A with the codesfor IIbad" and "month".

Bad

Month

00 000 001

00 100 000

In the OUT routine, we restoreFebruaryto 28 days and then jump back to

MONTH. This takes us to the INPUT subroutinewhereA will be storedin

the output lights.

Here are some variationson this problem for you to program.

1. In most countriesthe data sequenceis day, month, year.

There is more logic for doing it this way. Revisethe programfor this

input sequence.

EX 29-5

2. Either of these BCD inputs

0000 1010

or 0001 0000

yields an octal 012 (= 10 decimal). The first of theseBCD inputs usesa

non-valid BCD code. An evenbetterinput validity checkwould include

testsfor non-valid BCD codeseventhough the non-valid BCD codeslead

to valid answers. Re-write the INPUT subroutineto eliminate non-valid

BCD codes.

3. Expandc.nd modify the program so that the program will

indicate on which day of the week a valid date occurs. Do only 1900 to

1999. The output display could be in this form

Sunday .0 000 000

Monday o. 000 000

etc.

Saturday 00 000 0.0

Not valid 00 000 00.

Hint: January1, 1900 I fell on a Monday.

A news item noted that a grandmothercompletedher high school

work. The educationdepartment1scomputerrejectedher applicationfor

a diploma becauseit wasnIt programmedto handleforms for personsof

her age. In processingher applicationI the computersubtractedher date

of birth, 1887, from the currentyear and arrived at an age of minus 16.

What canyou tell abouthow the programwas written.

EX 29-6

Exercise30

Computersare deterministic. We meanthat what a computerdoes

is well definedand, exceptforfailures, it will always do the samething

when it startsfrom identical setsof conditions. Nothing is left to the

"imagination" of the computer. It is a slavewhich does "its thing" without

any variation.

Many problemscan bestbe solvedby the useof random numbers.

Generatinga random numberin a deterministicmachineis not easy. These

techniqueshave beenused:

1. Store previouslygeneratedrandom numbersin the memory.

(One or more books have beenpublishedwhich consistof nothing but random

numbers.)

2. Generatepseudo-randomnumbersin the computer. These

numbersI thoughdeterministicI will passthe most commontestsof random

numbers.

3. In our computerwe will describea third methodwhich

dependsupon an influenceexternalto the computerI namelythe operator.

This is a simple methodand the"quality" of the randomnumbersis fair

to good.

What is a randomnumber? We shall try to approximatethe following.

A bowl contains256 balls which are numbered000 to 377 octally. A ball

is selectedby someimpartial methodand the numberon it becomes the

next random number. This ball is placedback into the bowl andthey are

mixed up again. Again a ball is selected. At any drawing of a ball, all

balls are equally likely to be drawnregardlessof the previoushistory of

drawing.

We shall use a somewhatdifferent technique. While the computer

is idling I with nothing elseto do I weill have it add one to a number. When

we push switch 7 I it will stop countingand it will rotate the number"three

bits to the left. When we releasethe switch, the computerwill resume

adding one of the nowrotatednumber. When we push switch 7 againit will

rotate the number3 bits to the left again. And againwhen we release

switch 7 I it will resumeadding 1. The third time that we pushswitch 7,

the computerwill give us this numberas the randomnumber.

EX 30-1

A randomelementis presentbecausethe time at which we pushthe

switch varies. In addition, requiring three pushesto obtain one eight bit

numberincreasesthe chancesfor variations. If we requiredonly a one bit

random number,oneoperatorinteractionwould probably be enough.

We are going to give you a completeprogramand explain it along with

sometechniquesfor using the computer. At the endof the Exercisewe will

suggestsomeproblems for you to examine.

In this programthe computernever stopsrunning. Usually we have

the computerstop for input. Here I when the programhas nothing elseto do,

it remainsin a loop of three instructions:

COUNT ADD B

SKPI b7

JPD UNC

C = 1

(377)

COUNT

The B registerholds the numberwhich will becomeour randomnumber.

In this loop of three instructionsI we add one to B eachtime through. If

switch 7 is pushedthen b7 of location 377 will be a I, and the Skip will

be takenwhich would causethe programto bypassthe Jump instruction.

When switch 7 has not beenpushed,the Skip is not takenandthe Jump

instructionkeepsthe programin this loop.

Our requirernentwas for three pushesof the switch to generateone

number. On leaving the loop aboveI we will subtract1 in the X register

to count the numberof times we have pushedsvvitch 7. When X is zero,

we have pushedswitch 7 three times and we take the numberin B as our

random number.

SUB X

JPD X=O

ROTL B3

C=l

HAVE NUMBER

If X is not yet zero, we rotatedB three bits to the left.

When the random numberhas beengenerated,our program storesit

in the output location. We then Jump to START to repeatthe process.

If someother use were to be made of the numberI this would be a logical

place to exit to that program. The return shouldbe madeto START to

re-initialize the X register.

EX 30-2

The next problemis to detectwhetherswitch 7 has beenreleased.

We do it this way

CLEAR SET 0

SKP 0

JPD
JPD

b7

b7

UNC

UNC

(377)

(377)

CLEAR

COUNT

The programresetsbit 7 in location 377 0 If the switch is still dep ssed,

this bit reappearsin location 377 and the Skip is not effective. Wrejump

back to CLEAR and keeptrying this. When switch 7 is eventuallyreleased

bit 7 will not reappearin location 377 and the Skip will be taken. This

puts the program counterat the Jump instructionwhich in turn returnsto

COUNT.

We give the completeprogrambelow, all readyto use. Try it for

a while. Do you think the numbersare random?

se

Loc Data
Sym"bolic

Contents CommentsAddress
000 --- A
003 033 P START
200 000 OUTPUT

004 103 COUNT ADD B C=l Idle loop
005 001
006 372 SKP 1 b7 (377) Exit with
007 377 switch 7
010 344 JPD UNC COUNT
011 004
012 213 SUB X C=l X control number
013 001 of times
014 244 JPD X=O HAVE NUM Have random
015 027 numbernow
016 371 ROTL B3 Rotate
017 072 CLEAR SET 0 b7 (377) Test for switch
020 377 7 released

. " 021 272 SKP 0 b7 (377)
022 377
023 344 JPD UNC CLEAR Not released
024 017
025 344 JPD UNC COUNT Released
026 004
027 134 HAVE NUM STORE B (200) Display
030 200
031 344 JPD UNC START Dummy
032 033 instruction
033 223 START LOAD X G=3 Initial value
034 003
035 344 JPD UNC CLEAR Go test for relea
036 017 of switch 7 I

EX 30-3

Here are a variety of problemsfor you.

Problem 1

Imagine that you are drawing balls numbered0 to 255 (0 to 377

octal) which you return to the containerafter drawing eachone. On the

average,how many times would you expectto draw balls before you repeat

a numberpreviously drawn? You can use just the programwe have given

and keep track of the numbersyou have drawn on paper. PreferablyI you

can write a programfor this purpose.

Problem2

Count the numberof times that 0 I I, 2, -----, 7 appearsin the

units position. On very large sampleseachdigit shouldappearlI'aboutlf

one-eighthof the time. Similar counts canbe made for the "tensil and

IIhundredsIf digit.

Problem3

Following a 0 digit in the units position, count the numberof times

it is followed by a 0 I a 1, a 2 I etc. in the units position of the next

number. This is partial checkto determinewhethertwo successivenumbers

are independent" If they are independentI knowing the first nllmber does

not help you predict the next number. The oppositeof independentis

dependent. If the secondnumberis dependentto any degreeon the first

numberI knowledgeof the first numbercan help you predict the second

number.

We suggestedone type of test abovebut this can be extendedin

many obvious ways. For exampleI is the hundredsdigit of a secondnumber

dependentI at leastpartially I upon the units digit of the first number?

Problem 4

Write a programto simulatethe throw of dice or the deal of a deck

of cards. Hint: Use the units octal digit but throw the numberaway if

it is a 0 or 7. Use the rrtensIr digit for the other die.

EX 30-4

Problem 5

Try writing your own randomnumbergeneratorthrough the use of

an externalvariable suchas we used.

Problem6

Try writing a random numbergeneratorbasedonly on internal

operationsof the computer.

* * *

A pseudo-randomsequenceof 255 bits can be generatedby the

following process:

1. Start with any numberin a registerother than 000.

2. Count the numberof onesin bit positions 7, 5, 3, 2 I I, and o.
3. Do a left shift of one bit on the number. This throws avvay

bit 7 and createsa zero in bit o.
4. If the numberof lis in step2 is odd, put a 1 in bit 0, but

if the numberof OIS in step 2 is even, put a 0 in bit O.

'Each cycle of thesefour stepsgeneratesone new bit, say it is the

bit which is enteredinto position o. After 255 (decimal) cycles the pattern

will repeat.

EX 30-5

APPENDIX I

Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec

000 000 040 032 100 064 140 096 200 128 240 160 300 192 340 224

001 001 041 033 101 065 141 097 201 129 241 161 301 193 341 225

002 002 042 034 102 066 142 098 202 130 242 162 302 194 342 226

003 003 043 035 103 067 143 099 203 131 243 163 303 195 343 227

004 004 044 036 104 068 144 100 204 132 244 164 304 196 344 228

005 005 045 037 105 069 145 101 205 133 245 165 305 197 345 229

006 006 046 038 106 070 146 102 206 134 246 166 306 198 346 230

007 007 047 039 107 071 147 103 207 135 247 167 307 199 347 231

010 008 050 040 110 072 150 104 210 136 250 168 310 200 350 232

all 009 051 041 III 073 151 105 211 137 251 169 311 201 351 233

012 010 052 042 112 074 152 106 212 138 252 170 312 202 352 234

013 011 053 043 113 075 153 107 213 139 253 171 313 203 353 235

014 012 054 044 114 076 154 108 214 140 254 172 314 204 354 236

015 013 055 045 115 077 155 109 215 141 255 173 315 205 355 237

016 014 056 046 116 078 156 110 216 142 256 174 316 206 356 238

017 015 057 047 117 079 157 III 217 143 257 175 317 207 357 239

020 016 060 048 120 080 160 112 220 144 260 176 320 208 360 240

021 017 061 049 121 081 161 113 221 145 261 177 321 209 361 241

022 018 062 050 122 082 162 114 222 146 262 178 322 210 362 242

023 019 063 051 123 083 163 115 223 147 263 179 323 211 363 243

024 020 064 052 124 084 164 116 224 148 264 180 324 212 364 244

025 021 065 053 125 085 165 117 225 149 265 181 325 213 365 245

026 022 066 054 126 086 166 118 226 150 266 182 326 214 366 246

027 023 067 055 127 087 167 119 227 151 267 183 327 215 367 247

030 024 070 056 130 088 170 120 230 152 270 184 330 216 370 248

031 025 071 057 131 089 171 121 231 153 271 185 331 217 371 249

032 026 072 058 132 090 172 122 232 154 272 186 332 218 372 250

033 027 073 059 133 091 173 123 233 155 273 187 333 219 373 251

034 028 074 060 134 092 174 124 234 156 274 188 334 220 374 252

035 029 075 061 135 093 175 125 235 157 275 189 335 221 375 253

036 030 076 062 136 094 176 126 236 158 276 190 336 222 376 254

037 031 077 063 137 095 177 127 237 159 277 191 337 223 377 255

APPENDIX II

SUMMARY OF INSTRUCTION CODING

Instruction First Byte Octal Digits

Add, Sub,
Load, Store

D--

A Reg =
B Reg =
X Reg =

a
1
2

-D-

Add =
Sub =
Load =
Store =

o
1
2
3

--D

Constant= 3
Memory = 4
Indirect = 5
Indexed= 6
Ind/lnd = 7

Or I And, Or = Constant= 3
Lneg 3 (Noap = Memory = 4

And = Indirect = 5
Lneg = Indexed= 6

Ind/lnd = 7

Jumps A Reg = 0 JPD = 4 (I 0) = 3
B Reg = 1 JPI= 5 (= 0) = 4
X Reg = 2 JMD = 6 (< 0) = 5
Unc. = 3 JMI = 7 (~ 0) = 6

(> 0) = 7

Bit Test and
Manipulation

Set to 0 =
Set to 1 =
Skip on 0 =
Skip on 1 =

o
1
2
3

Digit Value
= Position

2

Shifts I

Rotates
(one byte only)

Right Shift = 0
Right Rotates=1
Left Shift = 2
Left Rotate= 3

A= 0
B= 4
----plus----
1 place= 1
2 places= 2
3 places= 3
4 places= a

1

Miscellaneous ~ a l t =
(one byte only) ~ o o p = ~ ~~ U[Any value] [o]

	Laboratory Exercises-Title Page
	Laboratory Exercises-Blank
	Laboratory Exercises-EX-I (Preface)
	Laboratory Exercises-Blank

	Laboratory Exercises-EX 1-1
	Laboratory Exercises-EX 1-2
	Laboratory Exercises-EX 1-3
	Laboratory Exercises-EX 1-4
	Laboratory Exercises-EX 1-5
	Laboratory Exercises-EX 1-6
	Laboratory Exercises-EX 2-1
	Laboratory Exercises-EX 2-2
	Laboratory Exercises-EX 2-3
	Laboratory Exercises-EX 3-1
	Laboratory Exercises-EX 3-2
	Laboratory Exercises-EX 3-3
	Laboratory Exercises-EX 3-4
	Laboratory Exercises-EX 3-5
	Laboratory Exercises-EX 4-1
	Laboratory Exercises-EX 4-2
	Laboratory Exercises-EX 4-3
	Laboratory Exercises-EX 5-1
	Laboratory Exercises-EX 5-2
	Laboratory Exercises-EX 5-3
	Laboratory Exercises-EX 5-4
	Laboratory Exercises-EX 6-1
	Laboratory Exercises-EX 6-2
	Laboratory Exercises-EX 6-3
	Laboratory Exercises-EX 6-4
	Laboratory Exercises-EX 7-1
	Laboratory Exercises-EX 7-2
	Laboratory Exercises-EX 7-3
	Laboratory Exercises-EX 7-4
	Laboratory Exercises-EX 8-1

	Laboratory Exercises-EX 8-2
	Laboratory Exercises-EX 8-3
	Laboratory Exercises-EX 9-1
	Laboratory Exercises-EX 9-2
	Laboratory Exercises-EX 9-3
	Laboratory Exercises-EX 9-4
	Laboratory Exercises-EX 9-5
	Laboratory Exercises-EX 10-1
	Laboratory Exercises-EX 10-2
	Laboratory Exercises-EX 10-3
	Laboratory Exercises-EX 10-4
	Laboratory Exercises-EX 11-1
	Laboratory Exercises-EX 11-2
	Laboratory Exercises-EX 11-3
	Laboratory Exercises-EX 11-4
	Laboratory Exercises-EX 11-5
	Laboratory Exercises-EX 11-6
	Laboratory Exercises-EX 11-7
	Laboratory Exercises-EX 12-1
	Laboratory Exercises-EX 12-2
	Laboratory Exercises-EX 12-3
	Laboratory Exercises-EX 12-4
	Laboratory Exercises-EX 12-5
	Laboratory Exercises-EX 12-6
	Laboratory Exercises-EX 13-1

	Laboratory Exercises-EX 13-2
	Laboratory Exercises-EX 13-3
	Laboratory Exercises-EX 13-4
	Laboratory Exercises-EX 13-5
	Laboratory Exercises-EX 14-1
	Laboratory Exercises-EX 14-2
	Laboratory Exercises-EX 14-3
	Laboratory Exercises-EX 14-4
	Laboratory Exercises-EX 14-5
	Laboratory Exercises-EX 14-6
	Laboratory Exercises-EX 15-1
	Laboratory Exercises-EX 15-2
	Laboratory Exercises-EX 15-3
	Laboratory Exercises-EX 15-4
	Laboratory Exercises-EX 15-5
	Laboratory Exercises-EX 15-6
	Laboratory Exercises-EX 16-1
	Laboratory Exercises-EX 16-2
	Laboratory Exercises-EX 16-3
	Laboratory Exercises-EX 16-4
	Laboratory Exercises-EX 16-5
	Laboratory Exercises-EX 16-6
	Laboratory Exercises-EX 17-1
	Laboratory Exercises-EX 17-2
	Laboratory Exercises-EX 17-3
	Laboratory Exercises-EX 17-4
	Laboratory Exercises-EX 17-5
	Laboratory Exercises-EX 18-1
	Laboratory Exercises-EX 18-2
	Laboratory Exercises-EX 18-3
	Laboratory Exercises-EX 18-4
	Laboratory Exercises-EX 18-5
	Laboratory Exercises-EX 18-6
	Laboratory Exercises-EX 18-7
	Laboratory Exercises-EX 19-1
	Laboratory Exercises-EX 19-2
	Laboratory Exercises-EX 19-3
	Laboratory Exercises-EX 19-4
	Laboratory Exercises-EX 20-1
	Laboratory Exercises-EX 20-2
	Laboratory Exercises-EX 20-3
	Laboratory Exercises-EX 20-4

	Laboratory Exercises-EX 20-5
	Laboratory Exercises-EX 20-6
	Laboratory Exercises-EX 20-7
	Laboratory Exercises-EX 21-1
	Laboratory Exercises-EX 21-2
	Laboratory Exercises-EX 21-3
	Laboratory Exercises-EX 21-4
	Laboratory Exercises-EX 21-5
	Laboratory Exercises-EX 21-6
	Laboratory Exercises-EX 22-1
	Laboratory Exercises-EX 22-2
	Laboratory Exercises-EX 22-3
	Laboratory Exercises-EX 22-4
	Laboratory Exercises-EX 22-5
	Laboratory Exercises-EX 23-1
	Laboratory Exercises-EX 23-2
	Laboratory Exercises-EX 23-3
	Laboratory Exercises-EX 23-4
	Laboratory Exercises-EX 24-1
	Laboratory Exercises-EX 24-2
	Laboratory Exercises-EX 24-3
	Laboratory Exercises-EX 24-4
	Laboratory Exercises-EX 25-1
	Laboratory Exercises-EX 25-2
	Laboratory Exercises-EX 25-3
	Laboratory Exercises-EX 25-4
	Laboratory Exercises-EX 25-5
	Laboratory Exercises-EX 25-6
	Laboratory Exercises-EX 26-1
	Laboratory Exercises-EX 26-2

	Laboratory Exercises-EX 26-3
	Laboratory Exercises-EX 26-4
	Laboratory Exercises-EX 26-5
	Laboratory Exercises-EX 27-1
	Laboratory Exercises-EX 27-2
	Laboratory Exercises-EX 27-3
	Laboratory Exercises-EX 28-1

	Laboratory Exercises-EX 28-2
	Laboratory Exercises-EX 28-3
	Laboratory Exercises-EX 28-4
	Laboratory Exercises-EX 28-5
	Laboratory Exercises-EX 28-6
	Laboratory Exercises-EX 29-1
	Laboratory Exercises-EX 29-2
	Laboratory Exercises-EX 29-3
	Laboratory Exercises-EX 29-4
	Laboratory Exercises-EX 29-5
	Laboratory Exercises-EX 29-6
	Laboratory Exercises-EX 30-1
	Laboratory Exercises-EX 30-2
	Laboratory Exercises-EX 30-3
	Laboratory Exercises-EX 30-4
	Laboratory Exercises-EX 30-5
	Laboratory Exercises-Appendix I
	Laboratory Exercises-Appendix II

